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Abstract 

The purpose of this study was to model within-year math growth for grade 2 students using a 

2PL third-order item response theory (IRT) growth model. We used curriculum-based 

measurement (CBM) math tests from the easyCBM
®

 benchmark and progress monitoring 

assessment system, a formative assessment used by teachers to monitor student progress and 

evaluate instruction. All assessments were based on the National Council of Teachers of 

Mathematics (NCTM) focal point standards. Specifically, we applied the growth model to 

explore how the contribution of each focal point to the latent math construct changes across the 

year. The results suggested that on average (a) the fall measure was the most difficult, followed 

by spring, and then winter; (b) Measurement had the strongest relation to the Grade 2 latent math 

factor in fall, Number and Operations and Algebra in winter and spring, and Number and 

Operations in general had the weakest relation to math across the year; and (c) the average Grade 

2 math trajectory demonstrated increasing growth rate across the year but a higher growth rate 

from fall to winter than from winter to spring.  
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Introduction  

The blueprint for revising the Elementary and Secondary Education Act (ESEA) was 

released in 2010. It emphasized education standards in all academic domains and encouraged 

states to adopt common academic content standards for students to succeed in college and the 

workplace, as well as assessments that more accurately reflect how students progress toward the 

skills outlined by the standards (U.S. Department of Education Office of Planning Evaluation 

and Policy Development, 2010). Specifically noted were standards-aligned assessments that 

better informed classroom instruction in response to academic needs, and that accurately 

measure higher-order skills and student academic growth (U.S. Department of Education Office 

of Planning Evaluation and Policy Development, 2010).  

The Common Core State Standards (CCSS) were released in conjunction with the ESEA 

blueprint with the purpose of setting “high standards that are consistent across states [that] 

provide teachers, parents, and students with a set of clear expectations that are aligned to the 

expectations in college and careers” (e.g., National Governors Association Center for Best 

Practices, Council of Chief State School Officers [NGACBP, CCSSO], 2010). The CCSS offer 

an articulation of what students are expected to learn in Grades K-12 in English language arts 

and mathematics for the purpose of providing clear goals for student learning to help teachers 

ensure their students have the skills and knowledge needed to be successful 

(www.corestandards.org/in-the-states).  

Curriculum-based measurements (CBM) can be aligned with curriculum standards and 

used to inform instruction. CBM is an approach to formative assessment that prioritizes the 

measurement of growth through multiple short, technically adequate, and sufficiently equivalent 

test forms (e.g., Deno, 2003; Tindal, 2013). CBMs provide teachers with a measurement of their 
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students’ current level of proficiency in a particular content area as well as a mechanism for 

tracking student progress to evaluate the effectiveness of instruction (e.g., Deno, 2003; Deno, 

Marston, & Tindal, 1985; Fuchs, 2004; Good & Jefferson, 1998; Tindal et al., 1985). CBMs are 

used to identify students at-risk for low achievement, to monitor the progress of those identified 

to help inform instructional decision-making, and as part of a response to intervention (RTI) 

framework for special education referral and identification (e.g., Fuchs & Fuchs, 2006; Speece, 

Case, & Molloy, 2003). In an RTI system, universal screening measures are administered to all 

students in a school or district during the fall, winter, and spring to estimate performance on 

general outcome measures (e.g., reading or math). In general, these data are used to examine 

whether students meet normative benchmark expectations set by the educators using the 

assessments.  

As of 2008, most of the research on CBM had been in reading, not mathematics (e.g., 

Tindal, 2013); however, CBM math can be effectively used to screen all students in a district, 

school, grade-level, class, or small group; monitor the effectiveness of instruction or 

interventions for general or special education students; and as an accessible way to communicate 

student growth to parents (e.g., Lembke & Stecker, 2007). Christ et al. (2008) reviewed the 

research and psychometric evidence for CBM math using Messick’s (1995) validity framework 

and noted the lack of research addressing consequential validity. The results of their review 

suggested broadly that math CBM can be sufficiently reliable and valid, but cautioned that 

interpretation must be informed by the context and scope of assessment domains and limited by 

its construct representation. 

In general, little attention has been given to the analysis of CBM math growth. Anderson 

and Irvin (2012) used a three-level hierarchical linear model to examine within-year growth on 
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the easyCBM
®

 math tests for students in one grade in one standard through. One study examined 

teachers’ decisions to progress monitor students in math based on fall benchmark scores, and 

reported Grade 6 progress monitoring growth patterns (e.g., Saven, Anderson, Nese, Alonzo & 

Tindal, 2013). Patarapichayatham, Anderson, and Kamata (2012) applied both latent class and 

latent transition models to Grades 5-8 math CBMs across two years with five cohorts, however 

their study focused primarily on the effect of the middle school transition on math achievement, 

rather than the trajectory of students’ math growth. Finally, in a review of 32 studies on 

mathematics CBMs for students from preschool to secondary schools, it was reported that (a) 

math growth rates appeared to be influenced by the complexity of the responses required of 

students, and (b) measures on which normative growth is more rapid would prove to be more 

valuable to practitioners (e.g., Foegen, Jiban, & Deno, 2007; Lembke, Hampton, & Beyers, 

2012). The authors also suggested that the amount of variability around typical growth rates will 

affect practitioners’ ability to detect changes in student growth. An important limitation of the 

review, however, was that of the 21 elementary studies reviewed, only 7 reported growth 

estimates, and all but one in linear terms.  

Coinciding with math growth is math skill development as it relates to curriculum and 

standards. Math skill development in the early elementary years (K-3) is hypothesized to 

advance concurrently across five areas: numbers and operations, geometry, algebra, 

measurement, and data analysis (e.g., Clements, 2004; Clements & Sarama, 2009; NCTM, 2006) 

with numbers and operations (or number sense or early numeracy) the most predictive of later 

math success (e.g., Mazzocco & Thompson, 2005; Missall et al., 2012). The central issue related 

to CBM math is domain sampling for measurement development (e.g., Tindal, 2013). Originally, 

CBMs assessments were created from the classroom’s curriculum; however in general, current 
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CBM assessments are based on comparable alternate forms of skills to be taught over time that 

preview and review skills (e.g., Tindal, 2013). Thus, the domain sampling for assessment 

development is not pulled directly from curricular material, but rather a general representation of 

the academic domains that make up the learning outcomes for a particular grade.  

Tindal’s (2013) summary of and reflection on CBM math suggested that it is comprised 

of multiple domains that must be connected by research, and different than reading, these 

domains successively build upon each other. Understanding how knowledge and skills develop, 

or how learning progresses, is crucial for modifying instruction (e.g., Mosher, 2011), 

strengthening the relevance of assessments, and achieving mastery toward achievement goals 

(e.g., Saez et al., 2012). While math standards like the CCSS focus on core conceptual 

understandings and procedures, they do not characterize how students acquire requisite 

knowledge and skills and progress toward anticipated mastery (e.g., Saez, Lai, & Tindal, 2012). 

Curriculum standards denote grade-specific material and specific student outcomes aligned to 

those standards, but learning progressions map what students are expected to do at different 

stages of knowledge and skill acquisition and, hopefully, provide understanding for how 

instruction and learning interact to build that acquisition (e.g., Saez et al., 2012). The CCSS 

“describe performance objectives as they relate to the ability of students to represent and 

interpret data through measurement” (e.g., Briggs, 2013, p. 11), but do not articulate the process 

between those objectives. In part, learning progressions aim to understand the processes and 

connect assessments, and the goal of this study is to explore this area where standards, 

assessment, and learning (or growth) meet. To do so, we take a small piece of the across-year 

learning progression and model the within-year CBM math growth for students in Grade 2 in an 

effort to understand the relation between standards and growth.  
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The purpose of this study was to model the within-year CBM math growth of grade 2 

students using a two-parameter (2PL) third-order IRT within-year growth model to explore 

trends in the relative contribution of math standards to the latent math construct (see Figure 1). 

Our primary research objectives were as follows: (a) report the description of the item 

parameters (i.e., item difficulty and item discrimination) for each standard focal point (nine) and 

each seasonal form (three) across the year; (b) explore the relative contribution of each Grade 2 

standard to the latent math construct across the year by comparing the seasonal (fall, winter, 

spring) math factor loadings on the standards to examine how the standards influence math 

across the year; and (c) report the average within-year grade 2 math growth and its functional 

form. 

Methods 

Measure and Sample 

A precursor to the CCSS (e.g., Kelley, Hosp, & Howell, 2008), the National Council of 

Teachers of Mathematics (NCTM) developed “focal point” standards for Grades K-8 as a 

precursor to the CCSS (e.g., Kelley, Hosp, & Howell, 2008). The focal points represented “a 

starting point in a dialogue on what is important at particular levels of instruction and as an 

initial step toward a more coherent, focused curriculum in this country” (e.g., NCTM, 2006, p. 

vii). The NCTM focal points have been adapted by several states as the basis of their state 

content standards in mathematics, and resemble the CCSS. For example, Table 1 depicts a 

comparison of the three grade 2 NCTM focal points and the four grade 2 CCSS standards. Each 

focal point or standard has a description, which includes a variety of interconnected concepts 

(see Table 1). Each also has several objectives which describe math content and process skills 
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which are not listed in Table 1, but do better reflect the dissimilarities between the NCTM focal 

point standards and the CCSS (a discussion of which is beyond the scope of this paper).  

The easyCBM
®

 is an online benchmark and progress monitoring assessment system that 

provides both universal interim-screening assessments for fall, winter, and spring administration, 

and multiple alternate progress monitoring forms designed for use in K-8 school settings (e.g., 

Alonzo, Tindal, Ulmer, & Glasgow, 2006). The easyCBM
®

 math items were developed to 

directly reflect the NCTM focal points (i.e., written to a particular objective within a single focal 

point standard) and the benchmark forms include three test types that match the NCTM 

curriculum focal points for each grade level. For grade 2, those test types are Numbers and 

Operations (N), Numbers and Operations and Algebra (A), and Measurement (M). In general, 

numbers and operations encompasses number knowledge, verbal counting, basic calculation, and 

quantity comparisons; algebra encompasses skills related to identifying patterns and bringing 

organization and predictability to unorganized situations; and measurement encompasses the 

identification of quantifiable attributes and comparing objects using the attributes (e.g., Missall, 

Mercer, Martinez, & Casebeer, 2012).  

The three easyCBM
®

 benchmark screening tests administered to all students in a school 

in the fall, winter, and spring are comprised of 45 items across all three focal points (e.g., Alonzo 

& Tindal, 2012), with each focal point representing approximately one-third of all items. The 

data was collected in the fall, winter, and spring of the 2011–2012 school-year, and Grade 2 

students with complete three benchmark measure data were included in the analysis (n = 

17,816). The easyCBM
®

 math benchmark measures were developed to be of equivalent 

difficulty. Using the results of Rasch analyses, items were selected items to use in the creation of 

multiple equivalent forms for progress monitoring appropriate for use with students in Grade 2 
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(Alonzo & Tindal, 2009). All alternate forms were of comparable difficulty as determined by the 

mean measure of the items on each form (e.g., Alonzo & Tindal, 2009). 

Modeling 

A 2PL third-order estimated time score item response theory growth model was applied 

in this study (Figure 1). The three focal points were (a) Number and Operations (N), (b) 

Measurement (M), and (c) Numbers and Operations and Algebra (A) were the first-order factors 

of the fall (F), winter (W), and spring (S) latent factors, which were the second-order factors. By 

applying this model we obtained the intercept (I), or fall initial status, and the within-year slope 

(S), as well as factor loadings for each focal points at each season. In addition, we obtained not 

only within-year growth information, but also the quality of each item (item difficulty and item 

discrimination) within each focal point, the quality of each focal point within each season (factor 

loadings), and the quality of each measure (fall, winter, and spring) across year. All parameters 

were estimated with the Mplus 7.0 (Muthén & Muthén, 1998-2012) software using the Bayesian 

estimator.  

Regarding the model specification, for the first order, the loading of the first item in each 

focal point is set to be 1.0 as scale identification. The remaining loadings are freely estimated. 

For identification of the mean structure, one measure intercept, the threshold for the first item in 

each focal point is set to zero as suggested by Bollen and Currna (2006) Sayer and Cumsille 

(2001), and Serrano (2010). The remaining intercepts are freely estimated. For the second order, 

the loading of the first focal point in each measure is also set to be 1.0 as scale identification. The 

intercepts of fall, winter, and spring are constrained to be zero, as is standard practice in a first-

order latent growth model. Regarding the third order, the intercept loadings of fall, winter, and 
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spring are constrained to be 1.0, and the slope loadings of fall and winter are constrained to be 

zero and 1.0, whereas the slop of spring is freely estimated to allow for nonlinearity.        

Results 

Descriptive Results  

Table 2 shows observed mean and standard deviation of total score of each measure. The 

mean scores of fall, spring, and winter measures were 24.66, 31.17, and 34.69 respectively, 

indicating a positive within-year average growth trajectory across the three testing occasions. 

The mean difference between winter and fall total scores was larger than the mean difference 

between spring and winter total scores (6.51 vs. 3.52), indicating these particular students had on 

average a higher growth rate from fall to winter than from winter to spring. In other words, these 

students developed their math skill proficiency more rapidly from fall to winter than from winter 

to spring. This result demonstrated that the within-year growth in this study was not linear. Thus, 

we applied the estimated time score growth model in this study to allow for nonlinearity in the 

growth model. Given the nature of data and the mean of total raw scores, although we did not 

test the linear growth model, we assumed the estimated time score growth model would fit our 

data better than a linear growth model.     

Table 3 shows the observed mean and standard deviation of total scores for each focal 

point within each measure. The mean of all three focal points within fall measure were quite 

similar – 8.73, 8.17, and 7.76 for numbers and operations (N), measurement (M), and numbers, 

operations, and algebra (A), respectively, indicating students had relatively similar scores across 

all three focal points in fall. Regarding the winter measure, the mean of numbers and operations 

(N) and numbers, operations, and algebra (A) were 11.06 and 11.50, indicating students had 

similar scores across both focal points, but the mean of measurement (M) (8.60) was slightly 
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lower. It could be interpreted that items in this focal point might be more difficult or function 

poorly in terms of the discriminating power; however, given the fact that the measurement (M) 

focal point had only 14 items, whereas the numbers, operations, and algebra (A) and the numbers 

and operations (N) focal points had 16 and 15 items respectively, the difference in students’ 

mean scores is difficult to interpret. The mean of all three focal points within spring measure 

were relatively similar. They were 10.77, 12.40, and 11.53 for numbers and operations (N), 

measurement (M), and numbers, operations, and algebra (A), respectively, indicating students 

had relatively similar scores across all three focal points in spring measure. 

Table 4 shows the correlations between total score of each focal point and total score of 

each measure. Overall, the correlations ranged from .80-.89, indicating moderate to high 

correlations. The correlations between three fall focal points and the fall measure ranged from 

.81 to .84, indicating strong relations. And correlations between three winter focal points and the 

winter measure and between three spring focal points the spring measure ranged from .84 to .89 

and .80 to .86, respectively. The correlations between the focal points across the year ranged 

from .38 to .63, indicating moderate relations between focal point across year. Finally, the 

correlations between the seasonal measures ranged from .65 to .77, indicating relatively high 

correlations between measures.       

Model Analyses 

 Several models were preliminary explored before we fit our final model, including: a 

linear growth of observed total scores; a 2PL first-order CFA for each focal point within each 

seasonal measure; a 2PL first-order CFA for each seasonal measure; a 2PL second-order CFA 

for each seasonal measure; a 2PL second-order CFA for all three seasonal measures 

simultaneously; and a the 2PL second-order CFA for all three seasonal measures 
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simultaneously with regression effects between measures. Overall, results showed acceptable fit 

and reasonable parameter estimates. We reported only results of the 2PL third-order estimated 

time score IRT growth model here. 

First objective: Item parameters. All item discriminations and item difficulties were 

converted by using marginal standardized factor (Kamata & Bauer, 2008). The marginal 

standardized factor of item discrimination can be written as 2 1/2(1 )

i
i

i








, where i  is the 

standardized loading for item i. The marginal standardized factor of item difficulty can be 

written as 2 1/2(1 )

i
i

i










, where i  is the standardized threshold for item i.  

 Results showed that all item difficulty parameters were in the range of [-2.85, 1.00], 

indicating a reasonable, if low, range of item difficulties across measures (Table 5). That is, 

results suggested that most of items were relatively easy. The average item difficulty across 

seasons was -0.12 (SD=0.52) for fall, -0.88 (SD=0.80) for winter, and -0.59 (SD=0.90) for 

spring. Thus, on average, the fall measure was the most difficult, followed by spring, and then 

winter. 

The item discriminations were generally high with a range of [0.03, 3.63], indicating the 

items within each focal point were of good quality (Table 6); however, few items were identified 

as needing improvement. Such items from the fall measure included items 4 (r = .03), and 13 (r 

=. 14) within the Number and Operations (N) focal point, item 4 (r = .13) within Measurement 

(M), and item 5 (r = .12), item 10 (r = .03), and item 12 (r = .11) within the Number and 

Operations and Algebra (A) focal point. The test developers might need to make decisions about 

these items whether they need to be revised or removed from the measure. The average item 

discrimination across seasons was 0.51 (SD=0.28) for fall, 1.02 (SD=0.75) for winter, and 0.89 
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(SD=0.39) for spring. Thus, on average, the winter measure had the best item discrimination, 

followed by spring, and then fall. 

Second objective: seasonal factor loadings. Overall, results demonstrated that each 

focal point has a strong relation with each measure across the year. It indicates the relative 

contribution of each grade 2 standard to the latent math construct (fall, winter, and spring) across 

the year. Given the residual variance estimates, the fall measure explained 83%, 91%, and 99% 

of the variance in students’ responses to the Number and Operations (N), Measurement (M), and 

Number and Operations and Algebra (A) focal points respectively. The winter measure 

explained 76%, 94%, and 87% of the variance in students’ responses to the Number and 

Operations (N)), Measurement (M), and Number and Operations and Algebra (A) focal points 

respectively, and the spring measure explained 71%, 78%, and 91% of the variance respectively.  

Standardized factor loadings for the fall latent factor and the Number and Operations (N), 

Measurement (M), and Number and Operations and Algebra (A) focal points were .90, .92, and 

.90, respectively. Using Bayesian estimation, we compared these parameters using their credible 

intervals such that if the 95% credible intervals of two parameters do not overlap, we concluded 

that the parameters were meaningfully different. Thus, for the fall standardized factor loadings, 

the Measurement (M) loading was meaningfully greater than both the Number and Operations 

(N) and Number and Operations and Algebra (A) loadings, which were not different from each 

other. For the winter standardized factor loadings, the Number and Operations (N) loading (.84), 

was meaningfully less than that for Measurement (M) (.90), which was in turn meaningfully less 

than that for Number and Operations and Algebra (A) (.92). And similarly for the spring 

standardized factor loadings, the Number and Operations (N) loading (.82), was meaningfully 

less than that for Measurement (M) (.86), which was in turn meaningfully less than that for 
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Number and Operations and Algebra (A) (.89). Thus, the results of the relative contribution of 

each Grade 2 standard to the within-year seasonal latent math constructs indicated that the 

Measurement (M) mattered most in fall, and the Number and Operations and Algebra (A) 

mattered most in winter and spring, followed by the Measurement (M). Overall, the Number and 

Operations (N) focal point meant less to the Grade 2 latent math factor across the year.  

Comparing the focal point factor loadings across seasons, the influence of Number and 

Operations (N) on math steadily decreased across the year, with a meaningful decrease from fall 

to winter, and a decrease from winter to spring. The influence of Measurement (M) on math also 

steadily decreased across the year, with a meaningful decrease from fall to winter from winter to 

spring. The trend for the Number and Operations and Algebra (A) is less clear, with a 

meaningful increase from fall to winter, and a meaningful decrease from winter to spring. 

Objective three: growth trajectory. The estimated means of the Number and 

Operations (N), Measurement (M), and Number and Operations and Algebra (A) latent factors 

for fall were .52, .50, and .16, respectively, for winter were 1.53, 1.04, and 1.69, and for spring 

were 1.85, 1.90, and 1.39. The means increased across nine focal points across a year. Overall, 

the means for each focal point increased across the seasons, with the exception of the Number 

and Operations and Algebra (A), which, like the factor loading results described above, increased 

from fall to winter but decreased from winter to spring. In general, these results were consistent 

with the observed means total scores of each focal point.  

The estimated trajectory mean for the intercept was 0.52 (variance = 0.55) and for the 

slope was 1.00 (variance = 0.05). The estimated time score for the spring factor loadings on the 

slope factor (1.32), so the model demonstrated nonlinear growth, with greater gains from fall to 

winter than winter to spring. Given the trajectory and the estimated time score estimates, the 
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estimated means of the fall, winter, and spring latent factors were 0.52, 1.53, and 1.85, 

respectively, indicating increasing growth rate across a year but a higher growth rate from fall to 

winter than from winter to spring. It indicated that students developed their math ability faster 

from fall to winter than from winter to spring. Moreover, it demonstrated that on average these 

grade 2 students had positive non-linear growth trajectory across the year.     

Discussions 

 

In response to our research objectives, our results demonstrated that (a) on average, the 

fall measure was the most difficult, followed by spring, and then winter; (b) Measurement (M) 

had the strongest relation to the Grade 2 latent math factor in fall, Number and Operations and 

Algebra (A) had the strongest relation to math in winter and spring, followed by Measurement 

(M), and Number and Operations (N) in general had the weakest relation to math across the year; 

and (c) the average Grade 2 math trajectory demonstrated increasing growth rate across the year 

but a higher growth rate from fall to winter than from winter to spring. We address these 

objectives and results in this discussion. 

In general, all nine focal points and three seasonal measures appeared to function well in 

terms of item difficulties and discriminations; however, a few items may need to be revised. Our 

IRT results suggested that most of easyCBM
®

 math items were relatively easy (Table 5), a 

finding which was expected based on the design of the measure. The easyCBM
®

 math items 

were developed to target the grade-level content standards in a way that would render them 

accessible to a wider range of student ability than might be typically expected of assessment 

items (e.g., Alonzo & Tindal, 2009). In other words, these measures were designed to better 

capture the proficiency and thus growth of low-achieving students by presenting items that 

would be more accessible to these students. Accordingly, our results also showed that on 
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average, the winter measure (the least difficult) had the best item discrimination, followed by 

spring, and then fall (most difficult). This finding is intuitive given that less difficult the measure 

for the average student, the better it discriminates those low-achieving students whom by design 

would not have the requisite math skills. The more difficult the measure, the more opportunity 

for average students to get an item incorrect, and for below-average students to guess an item 

correctly. 

In response to our second object, the results of the relative contribution of each Grade 2 

standard to the within-year seasonal latent math constructs indicated that Measurement (M) 

mattered most to the Grade 2 latent math factor in fall, and Number and Operations and Algebra 

(A) mattered most in winter and spring, followed by Measurement (M). In general, the Number 

and Operations (N) focal point meant to latent math across the year. These findings lay the 

foundation for future exploration of how these math measures reflect learning progressions, if at 

all. It may be that these factor loadings simply represent the instructional focus and curricular 

activities as planned across the year. A longitudinal growth model of the focal points across 

many grades may help connect learning/curriculum theory about learning progressions and 

psychometric models that allow diagnostic inferences about learning progressions (e.g., Briggs, 

2013). 

On average, students had a positive math trajectory growth across the year with a steeper 

growth rate from fall to winter than from winter to spring. In general, this nonlinear, decreasing 

within-year finding is consistent with recent CBM benchmark research in reading (e.g., Christ, 

Silberglitt, Yeo, & Cormier, 2010; Nese, Biancarosa, Anderson, Lai, Alonzo, & Tindal, 2012; 

Nese, Biancarosa, Cummings, Kennedy, Alonzo, & Tindal, 2013) and contributes to the 
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hypothesis that students developed their math ability faster from fall to winter than from winter 

to spring. 

A similar trend can be observed in the factor loadings of the seasons on Number and 

Operations and Algebra (A), which had a meaningful increase from fall to winter, and a 

meaningful decrease from winter to spring, and on the focal point means for the Number and 

Operations and Algebra (A) across time, which increased from fall to winter but decreased from 

winter to spring. The influence of the Number and Operations and Algebra (A) focal point may 

have had a strong influence on our growth estimates; that is, the latter may in fact be an artifact 

of the former. 

Finally, the benchmark measures were designed to be of equivalent difficulty such that 

student growth could be measured and interpreted in meaningful ways. Our results showed that 

on average, the fall measure was the most difficult, followed by spring, and then winter. This 

finding is difficult to explain in terms of application and methods, in that we would expect the 

forms to be of equivalent difficulty across the year based on the design and development, but 

also model specification. The fact that the measures are not of equivalent difficulty might 

suggest that they are not scaled correctly in our model. This is an issue that we intend to further 

with simulation studies, as it casts a shadow of uncertainty across all our results. 

These results offer only a preliminary, post hoc examination of math growth as it relates 

to standards-based assessment as it relates to learning. This study was intended as a starting point 

for a research agenda that examines this same relation longitudinally across grades as students’ 

progress on the learning continuum and standards merge into learning progressions. The long-

term goals of such research are to create research-based learning continua to help analyze or plan 

general sequencing of curriculum and to inform CBM assessments along the learning continuum 
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that can assist progress monitoring during the school year (e.g., Hess, 2010). Since we used only 

Grade 2 data, one limitation could be the limitation of the generalizability of the result. It would 

be interesting to further study students’ longitudinal math growth across the K-8 grade levels, 

and to explore a growth mixture models (GMM) to support this study. Also, the choice of 

estimator is another interesting topic to further explore.  

In conclusion, these results have implications for teachers’ understanding of developing 

math skills, and have the potential for informing learning progressions and providing applied 

researchers with different growth modeling techniques. Additionally, the developers of 

easyCBM
®

 math may use these results to help improve future math item writing, and potentially 

to modify the current tests to improve functioning. 
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Table 1 

 

Grade 2 Common Core State Standards (CCSS) and National Council of Teachers of 

Mathematics Curriculum (NCTM) Focal Point Standards 

 

Organization Standard /Focal Point Description 

CCSS Numbers & Operations in Base Ten “Understand place value. Use place 

value understanding and properties of 

operations to add and subtract.” 

NCTM  Numbers and Operations “Developing an understanding of the 

base-ten numeration system and place-

value concepts” 

CCSS Operations & Algebraic Thinking “Represent and solve problems 

involving addition and subtraction. 

Add and subtract within 20. Work with 

equal groups of objects to gain 

foundations for multiplication.” 

NCTM  Numbers and Operations and Algebra “Developing quick recall of addition 

facts and related subtraction facts and 

fluency with multi-digit addition and 

subtraction” 

CCSS Measurement & Data “Measure and estimate lengths in 

standard units. Relate addition and 

subtraction to length. Work with time 

and money. Represent and interpret 

data.” 

NCTM  Measurement “Developing an understanding of 

linear measurement and facility in 

measuring lengths” 

CCSS Geometry “Reason with shapes and their 

attributes.” 
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Table 2 

Mean and Standard Deviation of Total Scores of Each Measure 

Measure n Mean SD 

Fall 17,816 24.66 6.73 

Winter 17,816 31.17 8.40 

Spring 17,816 34.69 7.20 
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Table 3 

Mean and Standard Deviation of Total Scores of each Focal Point within Each Measure 

Focal point Mean SD 

Fall Numbers and Operations (N) 8.73 2.83 

Fall Measurement (M) 8.17 2.71 

Fall Numbers, Operations, and Algebra (A)  7.76 2.67 

Winter Numbers and Operations (N) 11.06 3.03 

Winter Measurement (M) 8.60 3.12 

Winter Numbers, Operations, and Algebra (A) 11.50 3.63 

Spring Numbers and Operations (N) 10.77 3.11 

Spring Measurement (M) 12.40 2.49 

Spring Numbers, Operations, and Algebra (A) 11.53 2.93 

Note. n = 17,816. 
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Table 4 

Correlations between Total Score of each Focal Point and Total Score of each Measure 

 W S FN FM FA WN WM WA SN SM SA 

F .73** .65** .84** .82** .81** .59** .67** .63** .58** .51** .54** 

W  .77** .67** .57** .55** .84** .85** .89** .69** .59** .67** 

S   .58** .52** .50** .65** .65** .68** .86** .80** .86** 

FN    .52** .52** .58** .57** .57** .55** .44** .48** 

FM     .48** .48** .56** .48** .45** .44** .42** 

FA      .42** .50** .49** .44** .38** .43** 

WN       .56** .62** .63** .47** .54** 

WM        .63** .57** .54** .54** 

WA         .58** .51** .63** 

SN          .52** .61** 

SM           .57** 

Note. ** Correlation is significant at the .01 level (2-tailed), F = Fall, W = Winter, S = Spring, 

FN = Fall Numbers and Operations (N), FM = Fall Measurement (M), FA = Fall Numbers, 

Operations, and Algebra (A), WN = Winter Numbers and Operations (N), WM = Winter 

Measurement (M), WA = Winter Numbers, Operations, and Algebra (A), SN = Spring Numbers 

and Operations (N), SM = Spring Measurement (M), and SA = Spring Numbers, Operations, and 

Algebra (A). 
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Table 5 

Item Difficulties for each Focal Point  

 

Item 

Focal Point 

FN FM FA WN WM WA SN SM SA 

1 0 0 0 0 0 0 0 0 0 

2 0.44 -0.16 0.09 -0.78 0.40 -0.14 0.82 0.21 -0.75 

3 0.29 -0.53 -0.01 0.05 0.14 -0.84 0.38 -0.28 -0.84 

4 -1.29 -0.29 -0.17 -2.23 -1.16 -0.68 -2.52 -1.33 -0.11 

5 -0.08 1.05 -0.30 -1.63 -1.19 -0.98 0.18 -1.15 -0.63 

6 0.39 -0.13 0.26 0.74 -1.14 -1.25 -1.50 -0.24 -0.59 

7 1.00 -0.45 -0.46 0.45 -0.82 -0.94 0.92 -0.59 0.06 

8 0.67 0.26 0.06 -2.43 -1.13 -0.91 -0.55 -0.49 0.01 

9 -0.55 -0.41 -0.37 -0.60 -1.23 -1.08 -0.36 0.02 -0.67 

10 0.60 -0.51 -0.29 -0.98 -0.73 -0.49 -2.85 -0.36 -1.08 

11 -0.07 -0.04 -0.25 -2.36 -0.80 -1.07 -2.74 -0.11 -0.48 

12 -0.43 -0.38 -0.38 -2.75 -2.50 -0.40 0.09 -0.13 -1.26 

13 -1.28 -0.45 -0.48 0.32 -0.83 -0.66 -2.32 0.01 -0.79 

14 -1.31 -0.31 -0.59 -1.74 -0.86 -1.20 -2.64 -0.45 -1.23 

15 0.65 0.44 0.16 -1.63 - -0.97 0.45 -0.59 -0.03 

16 - - - - - -0.47 - - - 

FP  

Mean (SD) 

-0.06 

(0.76) 

-0.13 

(0.43) 

-0.18 

(0.26) 

-1.04 

(1.16) 

-0.85 

(0.71) 

-0.76 

(0.37) 

-0.84 

(1.42) 

-0.37 

(0.43) 

-0.56 

(0.46) 

Season  

Mean (SD) 
-0.12 (0.52) -0.88 (0.80) -0.59 (0.90) 

Note. FN = Fall Numbers and Operations (N), FM = Fall Measurement (M), FA = Fall Numbers, 

Operations, and Algebra (A), WN = Winter Numbers and Operations (N), WM = Winter 

Measurement (M), WA = Winter Numbers, Operations, and Algebra (A), SN = Spring Numbers 

and Operations (N), SM = Spring Measurement (M), and SA = Spring Numbers, Operations, and 

Algebra (A), and PF = focal point. 
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Table 6 

Item Discriminations for each Focal Point  

 

Item 

Focal Point 

FN FM FA WN WM WA SN SM SA 

1 0.83 0.77 0.26 2.83 0.56 0.90 0.95 0.93 0.66 

2 0.89 0.56 0.62 0.51 0.48 0.60 0.39 0.57 1.43 

3 0.98 0.34 0.77 0.44 0.66 1.01 0.66 0.88 0.91 

4 0.03 0.13 0.27 0.73 0.69 0.76 1.15 0.76 0.78 

5 0.83 0.52 0.12 3.30 0.61 0.96 0.69 1.40 0.67 

6 0.70 0.26 0.85 1.24 0.71 1.09 1.83 1.30 0.99 

7 0.71 0.70 0.27 1.95 0.96 1.05 0.52 1.55 0.56 

8 0.52 0.58 0.79 0.85 0.82 0.71 1.03 0.35 0.51 

9 0.76 0.41 0.33 3.63 0.60 0.93 0.94 0.74 0.96 

10 0.94 0.38 0.03 0.86 0.57 0.85 1.47 1.06 0.78 

11 0.86 0.47 0.71 0.82 0.60 1.04 1.63 0.53 0.59 

12 0.58 0.31 0.11 1.86 1.01 0.59 0.37 0.45 0.86 

13 0.14 0.31 0.35 2.83 0.40 0.63 1.41 0.40 0.49 

14 0.25 0.26 0.21 0.51 1.02 0.73 1.72 0.94 0.60 

15 0.94 0.62 0.73 0.44 - 0.72 0.85 1.23 0.51 

16 - - - - - 0.84 - - - 

FP  

Mean (SD) 

0.66 

(0.30) 

0.44 

(0.18) 

0.43 

(0.28) 

1.52 

(1.13) 

0.69 

(0.19) 

0.84 

(0.17) 

1.04 

(0.48) 

0.87 

(0.38) 

0.75 

(0.25) 

Season  

Mean (SD) 
0.51 (0.28) 1.02 (0.75) 0.89 (0.39) 

Note. FN = Fall Numbers and Operations (N), FM = Fall Measurement (M), FA = Fall Numbers, 

Operations, and Algebra (A), WN = Winter Numbers and Operations (N), WM = Winter 

Measurement (M), WA = Winter Numbers, Operations, and Algebra (A), SN = Spring Numbers 

and Operations (N), SM = Spring Measurement (M), and SA = Spring Numbers, Operations, and 

Algebra (A), and FP = focal point. 
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Figure 1. The 2PL third-order item response theory growth model, in which the three focal 

points – Numbers and Operations (N), Measurement (M), and Numbers, Operations, and Algebra 

(A) – are the first-order factors of the fall (F), winter (W), and spring (S) latent factors, which are 

the three second-order factors. (I) represents the intercept, or fall initial status, and (S) represents 

the within-year slope for the latent growth curve model. 
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