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Research	QuesKons	
1.  What	is	the	typical	growth	trajectory	for	

SWSCD	in	reading	across	Grades	3-5	in	
Oregon?	

2.  How	do	individual	SWSCD	growth	
trajectories	vary	around	the	typical	growth	
trajectory?	

3.  Do	students	with	different	disability	
classificaKons	progress	at	significantly	
different	rates?	



Study	Sample	

•  1,464 Oregon 
students  

•  Participated in the 
Oregon AA-AAS 
Reading assessment 
in 2011, 2012, and/or 
2013  

•  Typical grade level 
progressions 

•  69% Male 
•  81% White 
•  16% with an ID 
•  19% with ASD 
•  20% with CD 
•  14% with OHI 
•  31% with SLD 



Oregon	Reading	AA-AAS	

•  Assessment composed of 11 performance tasks 
(total of 60 items) 

•  Scale is centered on 100 (range is typically 
between 60-140) 

•  Reliability: 
–  Internal consistency of measures was quite high: 

Cronbach’s α = .92, .95, and .96 for 2011, 2012, and 
2013, respectively (ODE) 

•  Validity: 
–  Documentation framed by the work of Messick, with 

construct validity as the overall framework (ODE) 



Study	Methods	

•  Nonlinear latent growth curve model with an 
estimated factor score (Kamata, Nese, 
Patarapichayatham, & Lai, 2013) 
–  Growth was non-linear, with most growth occurring 

between grades 3 to 4 
–  Time measured in (0, 1, 1.31) 

•  Maximum likelihood estimation with robust 
standard errors (MLR)  
–  Robust to violations of multivariate normality 

•  Mplus, Version 7.1 (Muthén & Muthén, 
1998-2007) 



Study	Methods,	cont.	

•  Three alternate forms (spring 2011, 2012, 2013) 
•  Calibrated to a common scale (in effect, students 

took the same test, with different performance 
expectations) 

•  Missing data  
–  Analyzed using Little’s Missing Completely at 

Random (MCAR) test with the MissMech R software 
package (Jamshidian, Jalal, & Jansen, 2014) 



Study	Methods,	cont.	

•  Used a random-effects pattern-mixture 
model to account for missingness in the 
data (Enders, 2011) 

•  Effect sizes for the average growth 
between time points were computed 
(Bloom, Hill, Black, & Lipsey, 2008) 



Study	Results	
•  Three models 

–  Model 1: Unconditional 
–  Model 2: Including static disability predictors 
–  Model 3: Pattern-mixture model, including static 

disability predictors and missingness patterns 
•  Model fit evaluated (Hu & Bentler, 1999; Kline, 2013) 

–  Comparative Fit Index (CFI) > .95  
–  Root-Mean Square Error of Approximation (RMSEA) 

< .06  
–  Standardized Root Mean Square Residual (SRMR) 

< .08 



SEM	Model	3	 Observed	
variables	

Disability	
Predictors	

Direct	
Effects	

Latent	
Intercept	
&	Slope	

Pa_erns	of	
missingness	



Significant	
intercept	
differences	across	
all	disability	
categories	except	
for	ASD	(all	higher	
than	reference	
group)	

Significant	slope	
differences	for	CD	
and	SLD	
(negaKve);	ASD	&	
OHI	
indisKnguishable	
from	reference	
group	

Only	students	
missing	G5	had	
significant	growth	
differences	based	
on	missingness	

Only	students	missing	
G4	&	5	had	significant	
intercept	differences	
based	on	missingness	
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Conclusions	
1.  What	is	the	typical	

growth	trajectory	for	
SWSCD	in	reading	
across	Grades	3-5	in	
Oregon?	

2.  How	do	individual	
SWSCD	growth	
trajectories	vary	
around	the	typical	
growth	trajectory?	

3.  Do	students	with	
different	disability	
classificaKons	
progress	at	
significantly	different	
rates?	



Discussion	

•  First study on growth for SWSCDs to consider 
non-linear growth and include missingness 
patterns 

•  Critical to include variables to account for group 
heterogeneity (i.e., disability) for this population 

•  Conflicting evidence of which model fit the data 
better; both fit well 

•  Missingness patterns need further exploration 
(adding in interactions) 



LimitaKons	
•  Disability classification was assumed as non-varying 
•  Interpretation of the missingness pattern results was 

difficult, suggesting the possibility of an omitted 
variable 

•  Modeling assumed that growth deceleration was 
consistent across all groups, but this was clearly not 
the case for students with ASD 

•  We assumed that one assessment was sufficient to 
model growth across three years of content (including 
assumptions regarding the vertical articulation of 
standards and ALDs across this range) 
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Thank	You!	

•  Dan	Farley,	Behavioral	Research	&	Teaching	
– dfarley@uoregon.edu	
	


