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Abstract 

The current study is framed in the context of monitoring student progress that is increasingly 

couched within a Response to Intervention (RTI) approach to teaching and learning. Using a 

three-level hierarchical linear model (HLM), we examine initial status and growth for fourth 

grade students who received short mathematics progress-monitoring assessments during the 

2011-2012 school year. We examine student growth by examining extant data that reflect teacher 

practices in the field. Two HLM analyses are presented. The first is conducted with a national 

sample of convenience, and is designed to investigate and characterize the amount and type of 

within-year growth in math. The second analysis, more exploratory in nature, is conducted with a 

further restricted sample, and is designed to examine the relationship between three important 

indicators of student literacy and initial status and within-year growth in math. Findings indicate 

significant within-year growth in math, though the nature of the growth trajectory is unclear. 

Additionally, while student growth is statistically observable, given the amount of growth 

relative to the scale of the progress-monitoring probe used as the outcome in our analyses, the 

usefulness of raw score reporting as a guide for instructional decision-making is also discussed. 

Further research on within-year growth in math is suggested, especially as it relates to the 

influence of various instructional practices on such growth, an important area of interest not 

addressed in this study. 

 



Within-year Growth in Math: Implications for Progress-Monitoring Using RTI 

Public schools face challenges to improve student learning and achievement. Educators 

implementing school-wide improvement efforts such as Response to Intervention (RTI; D. Fuchs 

& Fuchs, 2001) attempt to meet the diverse learning needs of students performing below 

expectations. The enactment of this goal, in part through ongoing progress monitoring aimed at 

characterizing within-year student progress (growth), is the focus of this study. 

RTI can be viewed as a grassroots school-wide improvement effort based on results of 

instructional interventions as measured by interim and formative assessments (Black & Wiliam, 

1998). In RTI, students are classified as "at-risk" of not meeting grade-level expectations through 

interim screening assessments, typically administered seasonally during the academic year. 

Students performing below a district- or school-designated level on interim screeners are 

provided an instructional intervention designed to improve achievement and are administered 

frequent formative progress-monitoring probes to track the effect of the intervention and ensure 

adequate gains (D. Fuchs, Mock, Morgan, & Young, 2003). RTI is intended to be dynamic, with 

students receiving individualized intervention based on their learning needs. The RTI process 

ideally results in students’ academic deficits being identified early so that targeted interventions 

can be provided and achievement raised over time.  

In contrast to longer statewide summative exams, formative assessments are intended to 

provide teachers with quick information to guide instructional decisions, rather than to evaluate 

the long-term results of instruction and content coverage (Black & William, 1998). Formative 

assessments must be brief to administer, with multiple equivalently difficult test forms available 

in each grade, so that teachers can efficiently evaluate students’ within-year growth.  
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Despite the necessarily brief administration time, formative measures must also maintain 

adequate psychometric characteristics. Within RTI, teachers base instructional decisions on the 

results of formative measures. Assessments with weak technical characteristics may misguide 

teachers’ instructional practices and threaten the validity of RTI. For instance, measures with 

weak psychometric characteristics may lead to some students receiving an intervention who are 

not necessarily in need (false positives), while others are withheld intervention despite being in 

need (false negatives). Regardless of these challenges, formative assessments are key for 

characterizing student growth within the context of RTI and guiding instructional decision-

making (D. Fuchs, et al., 2003). Thus, the capacity of such assessments to adequately capture the 

within-year growth of students performing below expectations is essential. 

In this paper, we evaluate students’ within-year growth in grade 4 in a single 

mathematical domain – Number and Operations. We present two analyses using hierarchical 

linear modeling (Raudenbush & Bryk, 2002). First, we explore the extent to which students’ fall 

math benchmark score predicts the intercepts (starting point) and slopes (change in performance 

over time) for students who were progress monitored. Second, we restrict the analysis to a 

subsample of students who had valid scores on three fall reading benchmark screeners assessing 

their oral reading fluency, reading comprehension, and vocabulary. We then explore the extent to 

which the reading measures predict the intercepts and slopes of students who were progress 

monitored in Number and Operations. The following research questions guided our analyses: 

1. What are the typical characteristics of student growth observed with a short 16-item 

Number and Operations mathematics progress monitoring assessment in Grade 4? 

(Analysis 1) 
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2. Does performance on the fall math benchmark predict students’ progress monitoring 

intercepts and/or slopes on Number and Operations mathematics progress monitoring 

assessments? (Analysis 1) 

3. Do students’ fall reading scores from the Grade 4 benchmark reading battery predict 

their progress monitoring intercepts and/or slopes on Number and Operations 

mathematics progress monitoring assessments? (Analysis 2) 

The purpose of the first analysis was to explore, generally, how students progressed 

during the year and how the fall mathematics benchmark assessment predicted their growth. The 

purpose of the second analysis was more exploratory. All math items used in the study were 

administered online and developed with adherence to principles of Universal Design for 

Assessment (Thompson, Johnstone, & Thurlow, 2002). Included in the delivery of items was the 

option for students to have item stems and response options read aloud. Because of these design 

features, we would theoretically expect the relation between reading and math to be low. The 

purpose of the second analysis was to test the relation between performance on these two 

content-area assessments empirically. Below, we synthesize current research related to 

mathematics growth, as well as universal design and the relation between reading and math. 

Within-Year Math Growth 

Previous research has highlighted the limited knowledge of typical within-year growth in 

math. For example, in a review of research on mathematics progress measures, Foegen, Jiban 

and Deno (2007) stated “the pool of measures about which we have some evidence of their use 

as progress indicators is substantially smaller than is the pool of measures with evidence for their 

use as static indicators” (pp. 137-138). Indeed, of the 32 studies the authors identified in their 

review, only 9 explored any characteristic of the slope over time. More recent research by 
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Lembke, Hampton and Beyers (2012) suggests that the field has shifted towards a greater focus 

on growth. The authors identified 27 studies that used some means of calculating a weekly 

growth rate. Yet, all but three of these studies were at the kindergarten or first grade level, with 

the vast majority focusing on fluency-based indicators (e.g., the number of digits correct; see L. 

Fuchs, Fuchs, & Courey, 2005).  

As students progress into the upper elementary and middle school grades, the 

mathematical concepts become more complex and less amendable to fluency-based indicators. 

Test construction for such purposes must then be reconceptualized in terms of the depth and 

breadth of mathematics constructs targeted, while maintaining valid test development practices 

such as Universal Design for Assessment. The inherent necessity to reconceptualize test 

construction for grades beyond early elementary generally leads to progress being more difficult 

to measure, perhaps one reason why so few studies have investigated within-year math growth 

beyond early elementary and/or fluency-based indicators (Calhoon, 2008; Foegen & Deno, 2001; 

Foegen, et al., 2007; Lembke, et al., 2012). Yet, within an RTI framework the within-year 

growth of students being progress monitored is critical. Further research is needed to identify test 

construction practices that lead to measures sensitive to detecting growth.  

Universal Design 

 Universal Design for Assessment (UDA) is a test development process that attempts to 

maximize the accessibility of test items to the widest range of respondents possible. UDA 

originated in the field of architecture as a means of designing structures to be accessible to 

persons with disabilities (Thompson, et al., 2002). By designing buildings with the potential 

users in mind from the beginning, construction can proceed in a way that makes the structure 
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accessible to all individuals without sacrificing visual aesthetics (e.g., wheelchair ramps). UDA 

adopted these principles of designing for accessibility for use in assessment development. 

 Thompson et al. (2002) outlined seven UDA test development principles. Two of these 

principles directly relate to the text students are asked to read: (a) maximum readability and 

comprehensibility and (b) maximum legibility. When, as in the current study, the construct being 

measured is not reading, other principles relate to excluding text, including defining constructs 

precisely. In other words, math items should be as free of text as possible (to ensure the construct 

being measured is math and not reading), and should target only a single math skill. 

In the current study, all items were developed adhering to the UDA principles outlined 

above. Further efforts were made to ensure that reading was not a significant factor in how 

students performed on the mathematics items, including the availability of read-aloud options for 

all item stems and response options containing written words. Figure 1 displays a sample item 

used in this study. Note the large amount of white space, reduced text, simple line art graphic, 

and read-aloud buttons. The item interface also contains UDA elements. For example, students 

can select a response option by clicking anywhere on the rectangular box representing the option. 

The response option then highlights blue (as shown in Figure 1) and the student can proceed to 

the next option by selecting the large “Next” button (again, clicking anywhere around the 

button). Given these design elements and the overall reduction in text/reading required of 

students, we were interested in exploring the extent to which reading measures would predict 

students’ performance. Previous research has suggested the relation between reading and math is 

quite strong (e.g., Stevens, 1995). We thus expected the relation to be present, but hypothesized 

that the magnitude of the relation would be suppressed.  
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In what follows, we present our methods for investigating student growth on a math 

progress monitoring measure during the 2011-2012 school. Results from this portion of the study 

serve to broaden the research base around within-year growth in math to include findings for 

later elementary students who are instructed in more complex mathematical concepts (beyond 

that of fluency-based numeracy skills).  

Methods 

In what follows, we organize our methods by the data cleaning steps taken and resulting 

analytic samples, the measures used in the study, and the two HLM analyses conducted at the 

fourth grade level.  

Data Cleaning and Analytic Samples 

The full extant database contained 29,728 students from 563 schools across 122 districts 

and 27 states. For this study, we were primarily interested in the growth made by students who 

were progress monitored using the easyCBM Number and Operations mathematics measure. 

However, our interest in exploring the relation between initial performance on the benchmark 

measures and within-year growth on the progress monitoring measures led us to restrict the 

sample to only students with a valid benchmark score who were progress-monitored. This step 

reduced the total sample size to 10,018 – or approximately 34% of the total sample. This number 

aligns well with expectations that students performing below the normative 25th percentile be 

progress-monitored Fuchs and Fuchs (2006). Restricting the sample to only students who had at 

least two progress monitoring scores in the area of Number and Operations and a valid 

benchmark score resulted in our final analytic sample for Analysis 1 of 2,189 students 

representing 105 schools. For Analysis 2, the sample was further reduced to include only 

students who had valid passage reading fluency, comprehension, and vocabulary scores on the 
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fall reading benchmark assessments, resulting in a final sample of 474 students in 42 schools for 

this second analysis. 

Measures 

Two mathematics and three reading measures were used in this study. For mathematics, 

we used the fourth-grade easyCBM Number and Operations progress monitoring probes and the 

fall math interim-benchmark screener. In reading, we used three easyCBM interim-benchmark 

screeners: passage reading fluency, reading comprehension, and vocabulary. Below, we 

summarize the technical adequacy of each measure used.  

Number and operations. All easyCBM math progress-monitoring forms were written to 

align with each of the National Council of Teachers of Mathematics (NCTM) Focal Point 

Standards (Alonzo, Lai, & Tindal, 2009) and designed to be of equivalent difficulty with a Rasch 

model (Alonzo, Anderson, & Tindal, 2009). For grade 4, the NCTM standards include Number 

and Operations, Measurement, and Number and Operations and Algebra. These easyCBM 

probes were selected because they were designed to measure higher-order, more complex 

mathematical skills, which adds to a research base primarily focused on monitoring early 

developmental areas (see L. Fuchs, et al., 2005; Lembke, et al., 2012). Ten alternate progress 

monitoring test forms were available, all of which were designed to be of equivalent difficulty. 

Students’ scores from these alternate forms were included as the outcome for both Analysis 1 

and 2. The measures included 16 multiple-choice items on each form addressing the objectives 

outlined by the fourth grade Number and Operations focal point standard. The technical 

adequacy of the measures has been reported by Nese et al. (2010) and is further detailed below. 

Mathematics interim-benchmark. The easyCBM math interim-benchmark assessment 

was designed for computer-based seasonal administration (fall, winter, and spring). The 
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assessment is comprised of 45 multiple-choice items. The benchmark tests are designed to screen 

students for academic risk of failing to meet grade-level expectations, and thus offer educators 

evidence to implement instructional interventions along with targeted progress monitoring within 

an RTI framework. In other words, within RTI, results from the interim-benchmark measures 

ideally work in conjunction with progress monitoring measures such as the Number and 

Operations probes used in this study. 

Nese et al. (2010) reported internal reliability of the easyCBM math measures using 

Cronbach’s alpha and split-half estimates. Alpha coefficients for the full sample of students 

included in the study were above .80, while split-half estimates were above .70. Alpha 

coefficients and split-half estimates remained consistent and high across specific student 

populations, including students who received special education services, English language 

learners, and race/ethnicity sub-samples. Criterion related validity for the math benchmarks with 

respect to the Oregon and Washington state tests has been reported, with Pearson correlation 

coefficients above .70 across the Grade 4 benchmarks, explaining 65% and 69% in the Oregon 

and Washington state tests, respectively (Anderson, Alonzo, & Tindal, 2010a, 2010b). Scores 

from the 2011-2012 fall math benchmark were included as predictors of student math growth in 

Analysis 1. 

Passage reading fluency. The easyCBM passage reading fluency (PRF) measure is an 

individually-administered test of students’ ability to accurately read narrative text (Alonzo & 

Tindal, 2007). Passages are scored based on the number of correctly read words per minute, with 

self-corrections counted as correct, and hesitations of longer than 3 seconds scored incorrect 

(with the student prompted to continue reading). For fourth grade, all passages contained 
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approximately 250 words of narrative text. Students’ fall benchmark PRF scores were included 

as predictors of student math growth for Analysis 2. 

Reading comprehension. The easyCBM multiple choice reading comprehension 

(MCRC) test contains 20 multiple-choice items assessing students’ literal, inferential, and 

evaluative comprehension of narrative texts approximately 1,500 words long. The measures were 

designed for computer or paper-pencil group administration. Of the 20 multiple-choice items, 14 

targeted either literal or inferential skills, while the remaining 6 targeted evaluative 

comprehension (Alonzo, Liu, & Tindal, 2007). 

Saéz et al. (2010) reported reliability for the benchmark reading comprehension 

measures. Saez and colleagues found moderately strong evidence of reliability in Grade 4, with 

Cronbach’s alpha ranging from .73 to .78 across all students in the study for the seasonal battery 

of assessments. Item correlations ranged from .60-.79 for ethnic subgroups across the three 

seasonal benchmarks. The reliability among English Language Learners was less consistent 

across grades and time points, ranging from .35-.76. Students’ comprehension scores from the 

2011-2012 fall benchmark were included as predictors of student math growth in Analysis 2. 

Vocabulary. The easyCBM vocabulary (VOC) measures were developed to assess 

students’ ability to understand the meaning of context-embedded grade-level vocabulary 

(Alonzo, Anderson, Park, & Tindal, 2012). The measure is group administered via computer or 

paper-pencil. Students silently read a single sentence containing a target vocabulary term, along 

with contextual information that implies the term’s meaning. Directly below the context 

sentence, an item prompt asks students to provide the meaning of the targeted vocabulary term. 

Students then choose from three response options: one correct response and two plausible but 

incorrect distractors. The target term is bolded in both the context sentence and the item prompt 
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for clarification. Alonzo, Anderson, Park and Tindal (2012) reported item level fit statistics 

based on Rasch analysis and distractor analysis results for all items in the easyCBM vocabulary 

item bank, using these results to construct the alternate forms comparable forms. Students’ 

vocabulary scores from the fall benchmark were included as predictors of student math growth in 

Analysis 2. 

Analyses 

 Two HLM analyses were conducted to explore the research questions. For both models, 

we began by first fitting an unconditional growth model. Visual inspection of individual 

students’ growth slopes suggested a curvilinear trend may have fit the data better than a simple 

linear function. Our full a priori unconditional growth model for both analyses was thus defined 

as 

  𝑃𝑀𝑆𝑐𝑜𝑟𝑒𝑡𝑖𝑗 = 𝜋!!" + 𝜋!!" 𝑡𝑖𝑚𝑒 + 𝜋!!" 𝑡𝑖𝑚𝑒! + 𝑒!"# 

𝜋!!" = 𝛽!!! + 𝑟!!" 
𝜋!!" = 𝛽!"! + 𝑟!!" 
𝜋!!" = 𝛽!"! + 𝑟!!" (1) 

𝛽!!! = 𝛾!!! + 𝑢!!! 
𝛽!"! = 𝛾!"" + 𝑢!"! 
𝛽!"! = 𝛾!"" + 𝑢!"! 

 
Where 𝑀𝑆𝑐𝑜𝑟𝑒!"# represents students’ Number and Operations progress-monitoring score at 

time t for student i in school j. Time represents the fractional months (coded to represent the 

specific day the test was administered) occurring between test administrations, which was 

entered to represent a linear trend (𝜋!!") and squared to represent a curvilinear trend (𝜋!!"). A 

priori, all parameters were assumed to vary between students (𝑟!!" to 𝑟!!") and schools (𝑢!!! to 

𝑢!"!). 
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 The time variable was entered individually centered. That is, for each student, the first 

progress-monitoring occasion was coded 0, regardless of when during the academic school year 

the administration occurred. All subsequent time points represented the fractional months 

occurring between the first assessment occasion and the t assessment occasion. The model 

intercept thus represented the average progress monitoring score for students at the time progress 

monitoring began. Seasonal control variables, representing whether the student began progress 

monitoring the winter or spring, as opposed to the fall, were then entered as student-level 

predictors to evaluate whether students’ intercepts and/or slopes were significantly related to the 

time progress monitoring began. 

 Our full a priori conditional models for each analysis are displayed in Appendix A. For 

Analysis 1, the easyCBM math fall benchmark was entered grand-mean centered as a student-

level predictor of students’ intercept and both linear and quadratic slopes, along with dummy 

vectors representing the season in which the student began progress monitoring (fall reference 

group). A priori, all parameters were assumed to vary randomly between schools. The primary 

purpose of Analysis 1 was to explore the within-year growth of students who were progress-

monitored on a brief (16 item) assessment addressing objectives from the Number and 

Operations NCTM focal point standard. 

For Analysis 2, the easyCBM fall math benchmark was replaced by the easyCBM fall 

reading benchmark tests of passage reading fluency (PRF), reading comprehension (MCRC), and 

vocabulary (VOC). All predictors were entered simultaneously and were grand-mean centered. 

All parameters were, again, assumed to vary randomly between schools. The primary purpose of 

Analysis 2 was to evaluate the extent to which reading performance predicted students’ math 
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intercept and/or slope, which we hypothesized would be minimal given the UDA principles 

adhered to during item development. 

 It is important to note that our a priori conditional models were not our observed final 

models. Rather, for each model we began by testing the fit between a linear and curvilinear 

model to arrive at a baseline unconditional growth model. We then built toward our theoretical 

full conditional models while generally dropping non-significant effects, though theory and 

parsimony were also considered. All analyses were run with the HLM 7 software (Raudenbush, 

Bryk, Cheong, Congdon, & du Toit, 2011) with full information maximum-likelihood 

estimation. Following our final model, residuals at all levels were investigated for adherence to 

the underlying assumptions of HLM (Raudenbush & Bryk, 2002). These investigations revealed 

no violations of the assumptions. 

Results 

In what follows, model-building decisions and associated results are presented for the 

two HLM analyses conducted in this study. 

Analysis 1  

The model that included students’ fall math benchmark scores as a predictor of student 

progress monitoring growth was fit for a sample of students who had valid scores on both the fall 

math benchmark and were progress monitored using the Number and Operations measure.  

The results of the unconditional curvilinear model are displayed as Model 1 in Table 1. 

The chi-square deviance test suggested the quadratic model fit the data significantly better than 

the linear growth model, 𝜒!(7) = 47.35, p < .001. Results suggested that students began, on 

average, responding correctly to 10.55 out of the 16 possible questions on the Numbers and 

Operations progress monitoring measure. This intercept value varied significantly between 
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students, 𝜒!(1310)  = 3359.20, SD = 2.00, p < .001, and between schools, 𝜒!(93)  = 583.49, SD 

= 1.13, p < .001. On average, students grew at a linear rate of .27 points per month. The linear 

slope did not vary significantly between students, though this value did significantly vary at the 

school level, 𝜒!(93)  = 192.12, SD = .30, p < .001. While the quadratic growth parameter varied 

significantly between schools, it was not a significant predictor of students’ math scores, and did 

not vary significantly between students. The parameter was thus removed from future models for 

parsimony. The ICC for the unconditional growth model suggested that 47.64% of students’ 

intercept variance depended on students, while 15.37% depended on schools. Additionally, 

4.56% of students’ linear slope variance depended on students, while 2.72% depended on 

schools.  

Dummy coded vectors representing whether the student began progress monitoring in the 

winter or spring, as opposed to the fall, were then entered into the model as seasonal controls. All 

variables were entered as student-level predictors of their intercept and both slopes, and allowed 

to vary randomly between schools. The random effects for the seasonal control variables did not 

vary significantly between schools, and were thus fixed. The resulting model with fixed effects 

for the seasonal controls fit the data significantly better than the model with the random effects, 

𝜒!(20) = 107.78, p < .001. The results of this model are displayed in Table 1 as Model 2. The 

winter and spring seasonal start variables were significant predictors of students’ intercepts. On 

average, students who began progress monitoring in the winter scored 0.66 points higher than 

students who began in the fall. Similarly, students who began progress monitoring in the spring 

scored, on average, 2.36 points higher than students who began in the fall. However, the fixed 

effects of the seasonal control parameters were nonsignificant predictors of students’ growth, and 

thus, were removed from the model. Overall, the model including the seasonal control 
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parameters accounted for 27.21% of the student-level variance beyond the unconditional growth 

model. 

Students’ scores on the fall math benchmark were then entered grand-mean centered into 

the model as predictors of students’ intercept and linear slope, and allowed to vary randomly 

between schools. Overall, the final model fit significantly better than the seasonal control model, 

𝜒!(7)  = 1881.75, p < .001, and suggested that students began, on average, responding correctly 

to 10.68 math questions. This value varied significantly between students, 𝜒!(1923)  = 2792.22, 

SD = 0.99, p < .001, and between schools, 𝜒!(93)  = 462.38, SD = .60, p < .001. Students 

progressed, on average, .20 points correct per month. This value varied randomly between 

students, 𝜒!(2018)  = 2281.10, SD = 0.14, p < .001, and between schools, 𝜒!(93)  = 194.88, SD 

= 0.05, p < .001. 

Both seasonal control variables persisted as significant predictors of students’ intercept. 

On average, students who began progress monitoring in the winter scored .56 points higher 

compared to students who began in the fall, while students who began being progress monitored 

in the spring scored, on average, 1.79 points higher than students who began in the fall. The 

results from the final model suggested that scores on the math benchmark significantly and 

positively related to students’ intercept. Every one point that students scored above the grand 

mean on the fall benchmark corresponded with, on average, a .20 point increase on the progress 

monitoring intercept. This value varied significantly at the school level, 𝜒!(93)  = 194.88, SD = 

.05, p < .001. Math benchmark scores were not a significant predictor of students’ linear slope, 

though this random effect did vary significantly between schools, 𝜒!(93)  = 118.04, SD = .01, p 

= .04. Overall, the model including students’ fall math benchmark scores accounted for 75.63% 

of the student-level variance beyond the unconditional growth model. 
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Analysis 2 

 The model that included students’ fall passage reading fluency, reading comprehension, 

and vocabulary benchmark scores as predictor variables was fit for a substantially reduced 

sample: Students who had valid data for all three reading measures and were progress monitored 

in the area of Number and Operations.  

 The results of the unconditional curvilinear model are displayed as Model 1 in Table 2. 

The chi-square deviance test suggested the quadratic model fit the data significantly better than 

the linear growth model, 𝜒!(7) = 65.07, p < .001. Overall, the model suggested that students 

began, on average, responding correctly to 10.55 out of the 16 possible questions. This value 

varied significantly between students, 𝜒!(393)  = 996.85, SD = 1.93, p < .001, and between 

schools, 𝜒!(39)  = 135.58, SD = 1.37, p < .001. Students progressed, on average, .54 points 

correct per month, with a deceleration of .05 points squared per month. The linear slope did not 

vary significantly between students, 𝜒!(393)  = 432.72, p = .08, but was retained for further 

model testing given its theoretical importance. That is, we were interested in the variance of the 

parameter regardless of its statistical significance. The rate of deceleration did vary between 

students, 𝜒!(39)  = 471.14, SD = .09, p = .004. Both the linear, 𝜒!(39)  = 71.04, SD = .28, p = 

.002, and the quadratic, 𝜒!(39)  = 61.97, SD = .03, p = .011, parameters varied significantly 

between schools. The ICC for the unconditional growth model suggested that 54.30% of 

students’ intercept variance depended on students, while less than 21.55% depended on schools. 

Additionally, 4.62% of students’ linear slope variance depended on students, while 2.29% 

depended on schools.  

 Similar to Analysis 1, seasonal control variables were then entered into the model as 

student-level predictors of their intercept and both slopes. Allowing the dummy variables to vary 
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randomly between schools resulted in insufficient data to allow for statistical testing of the 

random effects. Further, the model including the random effects did not fit significantly better 

than the model without the random effects, 𝜒!(39)  = 18.12, p > .50. For parsimony, we thus 

fixed the random effects for each dummy-vector. The results of this model are displayed in Table 

2 as Model 2. Both the winter and spring seasonal control start variables were significant 

predictors of students’ intercept. Students who began progress monitoring in the winter scored, 

on average, 0.94 points higher than students who began in the fall. Similarly, students who began 

progress monitoring in the spring scored, on average, 1.77 points higher than students who began 

in the fall. Neither seasonal control variable was a significant predictor of students’ linear or 

quadratic slopes. These variables were thus removed from the model as predictors of either slope 

prior to further model testing. Overall, the seasonal control model accounted for 15.87% of the 

student-level variance beyond the unconditional growth model. 

 Students’ fall passage reading fluency, reading comprehension, and vocabulary 

benchmark scores were next entered into the model grand-mean centered, as predictors of 

students’ intercept and both slopes. All parameters were initially allowed to vary randomly 

between schools; however, only the effect of vocabulary on students’ intercept and quadratic 

slope varied significantly between schools. We fixed all other random effects, which resulted in 

the vocabulary random effects no longer varying significantly between schools. All reading 

random effects were thus fixed. The results of this model are presented as Model 3 in Table 2.  

Overall, the final model fit significantly better than the seasonal control model, 𝜒!(9)  = 

194.80, p < .001. The final model suggested that students began, on average, responding 

correctly to 10.64 math questions. This value varied significantly between students, 𝜒!(387)  = 

817.10, SD = 1.63, p < .001, and between schools, 𝜒!(40)  = 73.28, SD = .52, p < .001. Similar 
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to the unconditional growth model, students progressed, on average, .55 points correct per 

month, with a deceleration of .05 points squared per month. The linear slope, again, did not vary 

significantly between students, 𝜒!(389)  = 430.62, SD = .39, p = .07, though the rate of 

deceleration did, 𝜒!(389) = 465.42, SD = .09, p = .005. The linear parameter varied significantly 

between schools 𝜒!(40)  = 74.58, SD = .30, p = .002, as did the quadratic, 𝜒!(40)  = 67.22, SD = 

.04, p = .005. Both the winter and spring seasonal control start variables remained significant 

predictors of students’ intercept. On average, students who began progress monitoring in the 

winter scored 1.04 points higher compared to students who began in the fall, while students who 

began progress monitoring in the spring scored, on average, 2.38 points higher than students who 

began in the fall. 

The results suggested that all three reading predictor variables significantly and positively 

related to students’ mathematics intercept; however, none of the reading variables significantly 

related to students’ linear or quadratic slope, for their math growth. On average, for every point 

increase in the students’ reading comprehension score on the fall benchmark, students’ initial 

mathematics progress monitoring score increased .14 points. For each additional word correctly 

read on the passage reading fluency measure, students’ initial progress monitoring score 

increased .01 points, and for every point increase on the vocabulary measure, students’ initial 

math score increased by .15 points. Overall, the model including students’ performance on the 

three fall reading benchmark assessments accounted for 29.08% of the student-level variance 

beyond the unconditional growth model. 

Discussion 

The results of this study suggest that students who were progress-monitored 

demonstrated within-year math growth that was statistically observable through a brief 16-item 



WITHIN-YEAR MATH GROWTH 20 

assessment addressing late elementary skill sets. Though growth in math is likely expected 

within the school year, when placed within the context of the focus of the current research base, 

this finding appears to not be trivial. Foegen et al. (2007) found that research has largely focused 

on growth in reading, and, to a lesser degree, early fluency-based math skills. Specifically, of the 

578 reports, dissertations, chapters, and journal articles Foegen and colleagues analyzed, only 32 

studies focused on mathematics. Additionally, the statistically significant growth in math we 

observed was found on measures targeting skills later in the developmental process for 

elementary students. To date, most research on math progress-monitoring measures has largely 

addressed early fluency-based skill areas such as addition, subtraction, multiplication, and 

division, typically monitoring student growth by assessing the change in the number of correct 

digits over time (L. Fuchs, et al., 2005). Lembke et al. (2012) reported that only three studies 

(approximately 11% of the total number of studies they analyzed) investigated growth in 

mathematics beyond the Kindergarten or first grade level. The sparseness of findings focused on 

growth in mathematics thus suggests a need for greater attention to this topic moving forward. 

Our study attempts to target this need by investigating the growth in a later elementary grade. 

For this reason, we intentionally targeted growth in higher-order (relative to early 

elementary) mathematics skills by selecting progress monitoring measures were designed to 

evaluate more complicated and nuanced problems, such as order of operations and fractions, 

often couched within real-world problem-solving scenarios. Items from the easyCBM Number 

and Operations measure go beyond assessing students’ proficiency with fluency-based 

algorithms, and instead assess students’ application of more complex mathematical concepts. 

And, though assessing more complex skills sets in Grade 4, the measures were quite short, taking 

on average, less than 12 minutes to administer 
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(http://www.rti4success.org/tools_charts/popups_progress/easyCBMMath _area.php). Efficient 

administration of probes of these types is a key feature of progress monitoring within an RTI 

context, where measures should be short, reliable, and used to make instructional decisions tied 

to individual student needs (D. Fuchs, et al., 2003). Further, Anderson, Lai, Alonzo and Tindal 

(2011) showed that the bulk of the math items were targeted at students performing below 

expectations. These findings are in line with the RTI-implementation guidelines provided by 

Fuchs and Fuchs (2001), who suggest that students be selected for progress monitoring because 

they are at risk of not meeting grade-level expectations. Thus, the results of our study further the 

findings by Anderson and colleagues, suggesting that the progress-monitoring outcome measures 

used in our study are not only statistically sensitive to detecting students performing below 

expectations at a single point in time, but also to documenting their improvement over time. 

However, it is important to note that the growth we observed was roughly one-fifth of a 

correct math problem per month (Analysis 1) to half of a problem per month (Analysis 2).  In a 

practitioner/school context, this means that two to five months of monitoring would be required 

before a teacher would “see” any raw score changes, making any decisions made from “growth” 

difficult, if not impossible given the 16-point scale in the outcome measure used in this study. 

Thus, future research should perhaps consider moving from raw score reporting to a scale score 

so that the statistical growth found on short progress monitoring probes is more readily 

observable to practitioners as a means to guide instructional decision-making. 

Although our results around growth in later elementary developmental skills contributes 

to the math growth literature beyond the early elementary grades, our findings were not 

definitive in terms of whether the observed math growth is linear or curvilinear (decelerating 

rate) within the school year. Whether growth is linear or curvilinear may have important 
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implications for helping teachers and school leaders to establish short- and long-term goals for 

students and/or for interpreting interim-formative assessment results in the context of 

instructional decision-making within RTI. For instance, if students grow at a linear rate from fall 

to spring, then it is likely sensible to use this information as a means to check the consequential 

validity of instructional decisions over the course of the year, as students should be progressing 

at a relatively stable rate over time. On the other hand, if growth decelerates over time, greater 

growth would be expected early in the school year, a finding that teachers could use to adjust and 

increase the intensity of instruction (and intervention) earlier or later in the year, while assuming 

decelerating growth trends over time. Though certainly not the only piece of data used to help 

establish student academic goals in math, better understanding of the trajectory of growth that 

should be expected is an important piece of information within the constellation of student-based 

information used for instructional decision-making. Thus, future research on within-year growth 

in math should seek to more clearly establish whether such growth is linear or not. 

Similarly, our finding that students’ fall math benchmark scores accounted for 75.63% of 

the student level variance beyond the unconditional growth model, may suggest the importance 

of assessing students early in the year as a means of identifying those who may require targeted 

instruction and intensive intervention. Where students started, in terms of their math benchmark 

performance was the most significant predictor of how they continued to perform on math 

measures throughout the year. This finding suggests the need for additional research, not only in 

terms of perhaps needing more sensitive measures of monitoring progress within year, but also, 

perhaps, on identifying more effective instructional approaches. With progress measures limited 

to raw scores on a 16-item scale, the growth we detected would not be interpretable by teachers 

using the easyCBM measures.  
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Our findings that students’ initial performance (intercept) on the mathematics 

assessments was only moderately positively related to their performance on the reading 

benchmark assessments and that reading benchmark score did not add to the variance explained 

by the growth models provide some evidence to suggest that the attention paid to the principles 

of UDA during development of the easyCBM mathematics measures was successful in 

decreasing the construct-irrelevant variance related to reading access skills. This finding has 

implications for others developing mathematics measures. Some relation between performance 

on the reading and mathematics benchmark assessments is to be expected, as both assessments 

likely measure, to some extent, general cognitive processing as well as the specific content areas 

(math and reading) that are their primary focus.  

Limitations and Future Research 

 Although our study adds to the research base on mathematics performance over time, 

specifically addressing both a grade level (4th) and content area (numbers and operations) that 

few other studies have addressed, we are left with more questions than answers. Our study does 

not provide definitive evidence of whether 4th-grade student growth in Numbers and Operations 

is best described as linear or curvilinear. In addition, we did not include any variables related to 

instruction in our models. An important extension to this study would be to include information 

about the intensity, type, and content of instruction being provided to students. To determine the 

sensitivity of the easyCBM measures to detect growth in student mathematics skills, it is 

important to understand whether students have actually made any progress over the course of the 

year. To the extent that more intense, effective, and targeted instruction results in higher 

performance, future models could take into account instructional variables and their impact on 

within and across-year growth. Without the inclusion of such instructional variables, however, it 
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is impossible to decipher our results fully. Perhaps the variation in within-year growth that we 

found in this study is an indication of the variation in effectiveness of educational practices. This 

is an area ripe for additional research.  
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Table 1 
Fixed and random effects for math progress monitoring growth (Analysis 1) 

Fixed Effects Model 1 Model 2 Model 3 
Coefficient SE Coefficient SE Coefficient SE 

Intercept, 𝛽!! 10.68 0.14 10.38 0.16 10.69 0.09 
Winter start, 𝛽!"   0.66 0.26 0.56 0.12 
Spring start, 𝛽!"   2.36 0.60 1.79 0.25 
MATH, 𝛽!"     0.25 0.01 

Linear Slope, 𝛽!" 0.27 0.05 0.20 0.02 0.20 0.02 
Winter start, 𝛽!!   - 0.03† 0.06   
Spring start, 𝛽!"   0.17† 0.09   
MATH, 𝛽!"     < 0.01† < 0.01 

Quadratic Slope, 𝛽!" -0.01† 0.01     
Random effects Estimate Estimate Estimate 
Within student, 𝑒!(!") 3.10 3.18 3.19 
Btwn student intercept, 𝑟!!  3.99 3.67 0.97 
Btwn student linear, 𝑟!! 0.15 0.03 0.02 
Btwn student quadratic, 𝑟!! < 0.01†   
Btwn school intercept, 𝑢!! 1.29 1.19 0.36 

Btwn school benchmark 
on intercept, 𝑢!" 

  < 0.01 

Btwn school linear, 𝑢!" 0.09   
Btwn school benchmark 
on linear, 𝑢!" 

  < 0.01 

Btwn school quadratic, 𝑢!" < 0.01   
Model deviance (df) 42335.11 (7) 42329.77 (20) 40450.49 (16) 
† Coefficient is not significant, p > .05; All other values significant, p < .05. 
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Table 2  
Fixed and random effects for math progress monitoring growth (Analysis 2) 

Fixed Effects Model 1 Model 2 Model 3 
Coefficient SE Coefficient SE Coefficient SE 

Intercept, 𝛽!! 10.55 0.27 10.35 0.25 10.64 0.17 
Winter start, 𝛽!"   0.94 0.49 1.04 0.38 
Spring start, 𝛽!"   1.77 0.57 2.38 0.26 
MCRC, 𝛽!"     0.14 0.03 
PRF, 𝛽!"     0.01 < 0.01 
VOC, 𝛽!"     0.15 0.05 

Linear Slope, 𝛽!" 0.53 0.08 0.54 0.09 0.55 0.08 
Winter start, 𝛽!!   0.16† 1.89†   
Spring start, 𝛽!"   1.17† 1.13   
MCRC, 𝛽!"     -0.02† 0.02 
PRF, 𝛽!"     < 0.01† < 0.01 
VOC, 𝛽!"     0.01† 0.02 

Quadratic Slope, 𝛽!" -0.05 0.01 -0.05 0.01 -0.05 0.01 
Winter start, 𝛽!"   -0.04† 0.05†   
Spring start, 𝛽!!   < 0.01† 0.62†   
MCRC, 𝛽!"     0.01† < 0.01 
PRF, 𝛽!"     < 0.01† < 0.01 
VOC, 𝛽!"     < 0.01† < 0.01 

Random effects Estimate Estimate Estimate 
Within student, 𝑒!(!") 3.14 3.14 3.14 
Btwn student intercept, 𝑟!!  3.73 3.78 2.65 
Btwn student linear, 𝑟!! 0.16† 0.15† 0.15† 
Btwn student quadratic, 𝑟!! 0.01 0.01 0.01 
Btwn school intercept, 𝑢!! 1.88 1.12 0.27 
Btwn school linear, 𝑢!" 0.08 0.08 0.09 
Btwn school quadratic, 𝑢!" < 0.01 < 0.01 < 0.01 
Model deviance (df) 12123.14 (16) 12113.38 (18) 11918.58 (27) 
† Coefficient is not significant, p > .05; All other values significant, p < .05. 
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Figure 1. Sample math item from the Grade 4 Numbers and Operations progress monitoring 

measure with the correct answer highlighted. 
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Appendix A 
 
Full A Priori Conditional Math BM Predictor Model (Analysis 1) 
 
𝑃𝑀𝑆𝑐𝑜𝑟𝑒!"# = 𝜋!!" + 𝜋!!" 𝑡𝑖𝑚𝑒 + 𝜋!!! 𝑡𝑖𝑚𝑒! + 𝑒!"# 

𝜋!!" = 𝛽!!! + 𝛽!"! 𝑊𝑖𝑛𝑡𝑆𝑡𝑎𝑟𝑡 + 𝛽!"! 𝑆𝑝𝑟𝑆𝑡𝑎𝑟𝑡 + 𝛽!"!(𝐹𝑎𝑙𝑙𝑀𝑎𝑡ℎ𝐵𝑀)+ 𝑟!!" 
𝜋!!" = 𝛽!"! + 𝛽!!! 𝑊𝑖𝑛𝑡𝑆𝑡𝑎𝑟𝑡 + 𝛽!"! 𝑆𝑝𝑟𝑆𝑡𝑎𝑟𝑡 + 𝛽!"!(𝐹𝑎𝑙𝑙𝑀𝑎𝑡ℎ𝐵𝑀)+ 𝑟!!" 
𝜋!!" = 𝛽!"! + 𝛽!"! 𝑊𝑖𝑛𝑡𝑆𝑡𝑎𝑟𝑡 + 𝛽!!! 𝑆𝑝𝑟𝑆𝑡𝑎𝑟𝑡 + 𝛽!"!(𝐹𝑎𝑙𝑙𝑀𝑎𝑡ℎ𝐵𝑀)+ 𝑟!!" 
𝛽!!! = 𝛾!!! + 𝑢!!! 
𝛽!"! = 𝛾!"! + 𝑢!"! 
𝛽!"! = 𝛾!"! + 𝑢!"! 
𝛽!"! = 𝛾!"! + 𝑢!"! 
𝛽!"! = 𝛾!"" + 𝑢!"! 
𝛽!!! = 𝛾!!" + 𝑢!!! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!"! = 𝛾!"" + 𝑢!"! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!!! = 𝛾!!" + 𝑢!!! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
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Full A Priori Conditional Reading BM Predictor Model (Analysis 2) 
 
𝑃𝑀𝑆𝑐𝑜𝑟𝑒!"# = 𝜋!!" + 𝜋!!" 𝑡𝑖𝑚𝑒 + 𝜋!!" 𝑡𝑖𝑚𝑒! + 𝑒!"# 

𝜋!!" = 𝛽!!! + 𝛽!"! 𝑊𝑖𝑛𝑡𝑆𝑡𝑎𝑟𝑡 + 𝛽!"! 𝑆𝑝𝑟𝑆𝑡𝑎𝑟𝑡 + 𝛽!"!(𝐹𝑎𝑙𝑙𝐵𝑀_𝑃𝑅𝐹)
+ 𝛽!"!(𝐹𝑎𝑙𝑙𝐵𝑀_𝑀𝐶𝑅𝐶)+ 𝛽!"!(𝐹𝑎𝑙𝑙𝐵𝑀_𝑉𝑂𝐶)+ 𝑟!!" 

𝜋!!" = 𝛽!"! + 𝛽!!! 𝑊𝑖𝑛𝑡𝑆𝑡𝑎𝑟𝑡 + 𝛽!"! 𝑆𝑝𝑟𝑆𝑡𝑎𝑟𝑡 + 𝛽!"!(𝐹𝑎𝑙𝑙𝐵𝑀_𝑃𝑅𝐹)
+ 𝛽!"!(𝐹𝑎𝑙𝑙𝐵𝑀_𝑀𝐶𝑅𝐶)+ 𝛽!"!(𝐹𝑎𝑙𝑙𝐵𝑀_𝑉𝑂𝐶)+ 𝑟!!" 

𝜋!!" = 𝛽!"! + 𝛽!"! 𝑊𝑖𝑛𝑡𝑆𝑡𝑎𝑟𝑡 + 𝛽!!! 𝑆𝑝𝑟𝑆𝑡𝑎𝑟𝑡 + 𝛽!"!(𝐹𝑎𝑙𝑙𝐵𝑀_𝑃𝑅𝐹)
+ 𝛽!"!(𝐹𝑎𝑙𝑙𝐵𝑀_𝑀𝐶𝑅𝐶)+ 𝛽!"!(𝐹𝑎𝑙𝑙𝐵𝑀_𝑉𝑂𝐶)+ 𝑟!!" 

𝛽!!! = 𝛾!!! + 𝑢!!! 
𝛽!"! = 𝛾!"! + 𝑢!"! 
𝛽!"! = 𝛾!"! + 𝑢!"! 
𝛽!"! = 𝛾!"! + 𝑢!"! 
𝛽!"! = 𝛾!"! + 𝑢!"! 
𝛽!"! = 𝛾!"! + 𝑢!"! 
𝛽!"! = 𝛾!"" + 𝑢!"! 
𝛽!!! = 𝛾!!" + 𝑢!!! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!"! = 𝛾!"" + 𝑢!"! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!!! = 𝛾!!" + 𝑢!!! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!"! = 𝛾!"# + 𝑢!"! 
𝛽!"! = 𝛾!"# + 𝑢!"! 

 


