INDIVIDUAL DIFFERENCES OR INDIVIDUAL DIFFERENCE

Dr. Gerald Tindal College of Education University of Oregon

Marshall McLuhanisms

Why is it so easy to acquire the solutions of past problems and so difficult to solve current ones?

The answers are always inside the problem, not outside.

Mud sometimes gives the illusion of depth. You mean my whole fallacy's wrong?

I may be wrong, but I'm never in doubt.

The National Assessment Program - Literacy and Numeracy

- Federal Education Minister Simon Crean said 90 per cent of students are at or above the national minimum standard in "almost all areas tested".
- "We are beginning to see the benefits of national testing in literacy and numeracy. NAPLAN exposes our school system to the light and allows us to identify where things are going well - and more importantly - it helps to identify the areas of under-performance which demand further attention."
- The Minister said the NAPLAN data was useful for assessing success in improving the levels of literacy and numeracy among WA school students, but was best used in conjunction with a range of assessment methods to plan effective numeracy and literacy programs.
- http://www.perthnow.com.au/news/western-australia/wa-ranks-poorly-in-national-test/ story-e6frg13u-1225917391872

Latest Results

NAPLAN Year 3 Reading

Figure 1a: Achievement of Year 3 Students in Reading, by State and Territory, 2010.

	NSW	Vic	Qld	WA	SA	Tas	ACT	NT	Aust
Mean scale	421.7	430.7	392.7	398.9	401.6	414.1	438.9	328.2	414.3
score/(S.D.)	(81.6)	(77.7)	(79.5)	(85.8)	(79.2)	(87.8)	(83.0)	(121.7)	(83.4)

Results Over Time

NAPLAN Year 3 Writing

Figure 5b: Achievement of Year 3 Students in Writing, by State and Territory, 2008–2010.

An Assumption: Standardization

- Test administration of tests -most public and visible aspect of testing.
- Much of the standardization of testing conditions relates to the quality of test administration...
- Standardization is a common method of experimental control for all tests.
- Every test (and each question or stimulus within each test) can be considered a mini experiment (van der Linden & Hambleton, 1997).
- The test administration conditions standard time limits, procedures to ensure no irregularities, environmental conditions conducive to test taking, and so on – all seek to control extraneous variables in the "experiment" and make conditions uniform and identical for all examinees.
- Without adequate control of all relevant variables affecting test performance, it would be difficult to interpret examinee test scores uniformly and meaningfully (Downing, 2006, p.15).

An Aside: Accommodations

 Test Administration Authorities are responsible for the implementation and administration of the NAPLAN tests in their jurisdiction. Permission for variation of dates for testing, for use of scribes and other special provisions must be sought from the Test Administration Authority and approval received by schools prior to the national test period.

Measures of Change – Two Views

- Norm-referenced AND individual-referenced distributions
- Use in resource allocation at group and individual level
- Related to other measures
- Potential for connecting intercept and slope
- Sensitive to interventions
- Fosters development of causal inferences

Individual Differences

Sir Francis Galton

💽 🕼 🎅 🗘 😒 🎸 🥅 🜒 🖭 💽 (100%) Sat 9:41 AM 🔍 ScreenFlow File Edit Insert Font Actions View Window Help BellShapeCurveCorrelation.pdf (1 page) 4 Sir Francis Galton F.R.S: 1822-1911 C Or Sir Francis Galton Move Text Select Annotate + T http://galton.org/ Previous Next Zoom e e SIX Collected Works List Gallery News Correspondence Intelligence and IQ Exploration | Meteorology | Genetics | Psychology | Statistics | Anthropology | Composite Portraiture | Fingerprin 6 + http://webspace.ship.edu/cgboer/intelligence.html The Real Error of Cyril Burt Is it genetic or environmental? Francis Galta Here are a few correlations to ponder, between one person's IO and anothers: Factor Analysis and the Reification of Intelligence father-child .51 🛘 🗖 🚩 🖏 🔊 🔊 🔂 📬 🐨 🦉 🕅 🕅 🕱 🕲 🥃 Sir Francis Galton F.R.S. 1822-1911 mother-child .55 .50 siblings biological adoptive families families The case of Sir Cyril Burt mother-.41 09 child If I had any desire to lead a life of indolent ease, I would wish to be an identical twin, separated at birth from my brother and father-.40 .16 raised in a different social class. We could hire ourselves out to a child host of social scientists and practically name our fee. For we would childbe exceedingly rare representatives of the only really adequate nat-.35 .03 child ural experiment for separating genetic from environmental effects in humans-genetically identical individuals raised in disparate environments. identical fraternal Studies of identical twins raised apart should therefore hold twins twins pride of place in literature on the inheritance of IQ. And so it would be but for one problem-the extreme rarity of the animal fingerprints .97 .46 itself. Few investigators have been able to rustle up more than height 93 65 twenty pairs of twins. Yet, amidst this paltriness, one study seemed IQ (Binet) .88 to stand out: that of Sir Cyril Burt (1883-1971). Sir Cyril, doyen of .63 mental testers, had pursued two sequential careers that gained him IQ (Otis) .92 .62 a preeminent role in directing both theory and practice in his field Victorian polymath: geographer, meteorologist, tropical explorer, founder of differential psychology, inventor of word of educational psychology. For twenty years he was the official psy-.56 .86 ٢ meaning fingerprint identification, pioneer of statistical correlation and regression, convinced hereditarian, eugenicist, Java Normal Curve proto-geneticist, half-cousin of Charles Darwin and best-selling author. ۶. nature study .77 .55 ◄ ► + Shttp://www.dhurley.com/norm C Qr Google history and I have no patience with the hypothesis occasionally expressed, and often implied, especially in tales written to teach children to .82 .67 be good, that babies are born pretty much alike, and that the sole agencies in creating differences between boy and boy, and man and man, are steady application and moral effort. It is in the most unqualified manner that I object to pretensions of natural literature .87 .73 spelling equality. The experiences of the nursery, the school, the University, and of professional careers, are a chain of proofs to the contrary So intelligence clearly has a powerful genetic component. But we can also see a number of environme - Francis Galton, Hereditary Genius hindrances: A stimulating environment, parental encouragement, good schooling, specific reasoning sk practice, and so on, certainly help a person become more intelligent. Likewise, there are certain biologi Despite his colossal achievements, contemporary reputation and far-reaching influence, Sir Francis Galton is no are nevertheless environmental: prenatal care, nutrition (especially in early childhood), freedom from d longer widely known or appreciated except among specialists. This site corrects the record, collecting online all physical trauma, and so on. 64 Ø of Galton's original published work, including all his books, papers and other published work. The complete, definitive biography by Karl Pearson, rare even in libraries, is provided here, as are contemporary reviews of, All of these are important and cannot be ignored -- especially when these are the things we can most ea and commentary on, Galton's work. There is a substantial gallery of photographs and portraits of Galton, and about! But I do believe that something better than half of intelligence is accounted for by genetics. An concise overviews of his major areas of interest are provided. simply, a matter of brain efficiency. If your brain is well-developed, free from genetic defects, free fron imbalances, then it will work well, given a decent environment. But no matter how good your environ The collection contains many newly discovered items and material that has long been almost impossible to forced to rely on "bad equipment," it will be much more difficult to attain high intelligence. obtain. The product of over five years of research - an international treasure-hunt through rare Victorian journa and newspaper collections, archives, bibliographies and other arcana - it is now practically complete. New items Most of the normal curve of intelligence, I believe, is due to a variety of physiological impairments of b continue to be added, as a clearer picture of Galton's wide-ranging research programme is uncovered. such as that resulting from malnourishment, prenatal trauma, chromosomal damage, and, most often, sir of certain neurochemical makeups. These stretch what would otherwise be a much "tighter" curve out

Oral Reading Fluency

SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2002 Oral Reading Study.

Figure 2-6. Average reading scale scores in relation to the achievement levels, by degree of reading accuracy when only counting meaning-change errors, grade 4: 2002

¹Sample size was insufficient to permit a reliable estimate for students with 21 or more errors that resulted in a change of meaning.

SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2002 Oral Reading Study.

Figure 3-2. Average reading scale scores in relation to the achievement levels, by average number of words read per minute, grade 4: 2002

NOTE: The oral reading study passage comprises 198 words.

SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2002 Oral Reading Study.

Figure 3-5. Percentage of students, by number of words read in the first minute of oral reading and average number of words read per minute, grade 4: 2002

NOTE: Detail may not sum to totals because of rounding. The oral reading study passage comprises 198 words. SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2002 Oral Reading Study.

Figure 3-6. Average reading scale scores in relation to the achievement levels, by number of words read in the first minute of oral reading, grade 4: 2002

NOTE: The oral reading study passage comprises 198 words.

SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2002 Oral Reading Study.

Figure 4-3. Average reading scale scores in relation to the achievement levels, by NAEP reading fluency scale level, grade 4: 2002

SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, National Assessment of Educational Progress (NAEP), 2002 Oral Reading Study.

Standards

Grade:	1	2	3	4	5	6	7	8
Words/	1.5	1.8	2.1	2.4	2.8	3.2	3.6	4.0
Second								
Words/								
Minute	90	108	126	144	168	192	216	240

Norms Reported by Starch in 1915

Grade:	2	3	4	5
Words/Minute	94	114	118	128

Hasbrouck and Tindal in 1992

Grade:	1	2	3	4	5	6	7	8
Words/								
Minute	59	89	107	125	138	150	150	150

In the 2002 NAEP study, the fourth-graders' (n=1,779) average reading rate across the entire passage was **119** words per minute.

Hasbrouck and Tindal in 2005

TABLE 1 Oral reading fluency norms, grades 1-8						
Grade	Percentile	Fall WCPM	Winter WCPM	Spring WCPM		
1	90 75 50 25 10 <i>SD</i> Count		81 47 23 12 6 32 16,950	111 82 53 28 15 39 19,434		
2	90	106	125	142		
	75	79	100	117		
	50	51	72	89		
	25	25	42	61		
	10	11	18	31		
	SD	37	41	42		
	Count	15,896	18,229	20,128		
3	90	128	146	162		
	75	99	120	137		
	50	71	92	107		
	25	44	62	78		
	10	21	36	48		
	SD	40	43	44		
	Count	16,988	17,383	18,372		
4	90	145	166	180		
	75	119	139	152		
	50	94	112	123		
	25	68	87	98		
	10	45	61	72		
	<i>SD</i>	40	41	43		
	Count	16,523	14,572	16,269		
5	90	166	182	194		
	75	139	156	168		
	50	110	127	139		
	25	85	99	109		
	10	61	74	83		
	<i>SD</i>	45	44	45		
	Count	16,212	13,331	15,292		
6	90	177	195	204		
	75	153	167	177		
	50	127	140	150		
	25	98	111	122		
	10	68	82	93		
	<i>SD</i>	42	45	44		
	Count	10,520	9,218	11,290		
7	90	180	192	202		
	75	156	165	177		
	50	128	136	150		
	25	102	109	123		
	10	79	88	98		
	SD	40	43	41		
	Count	6,482	4,058	5,998		
8	90	185	199	199		
	75	161	173	177		
	50	133	146	151		
	25	106	115	124		
	10	77	84	97		
	SD	43	45	41		
	Count	5,546	3,496	5,335		
WCPM: Words (SD: Standard d Count: Number	correct per minute eviation • of student scores					

An Example of ORF and OSA Grade 3

ORF_CW

Y = 201.046 + .197 * X; R^2 = .37

An Example of ORF and OSA Grade 8

8/11/2009 - 12:56:44 pm

Home

Measures Reports

Welcome tealy!

Select which area you would like to view or update.

Students

Students

Enter new students or edit your current list, grouping them by grade, class, period or subject.

<u>Measures</u>

Download and print measures, then enter scores online.

Reports

View and analyze your students' tests, progress and scoring.

Account

Change your password or edit any information associated with your account.

Training

Learn how to administer and score the measures used by easyCBM.

Account

Oral Reading Fluency

Last			Disab.		Fall	Fall	Fall	Fall	Fall Risk	Spring	Spring	Spring	Spring	Spring Risk
Name	Grade	Gender	Code	Ethnic	PRF	Vocab	MCRC	Factor	Category	PRF	Vocab	MCRC	Factor	Category
1	5	F		3	159	18	18	1	L	185	22	16	0	L
2	5	М		1	184	22	16	0	L	192	23	16	0	L
7	5	М		1	184	16	14	2	S	186	22	16	0	L
8	5	М	50	1	210	23	17	0	L	181	22	16	0	L
9	5	М		1	118	20	15	1	L	168	23	16	0	L
16	5	F		3	162	15	12	4	Н	178	24	16	0	L
17	5	F		1	168	20	14	1	L	199	22	18	0	L
21	5	М		1						199	21	15	1	L
22	5	F		1	147	20	18	0	L	185	20	17	1	L
23	5	F		1	155	18	11	3	S	183	20	18	1	L
24	5	М		1	137	20	6	2	S	160	21	15	1	L
25	5	F		3	179	15	13	3	S	207	22	14	1	L
26	5	М		1	139	17	15	1	L	145	21	16	1	L
27	5	М		1						215	19	17	1	L
28	5	F		3	155	20	13	1	L	179	24	15	1	L
40	5	F		1	130	18	16	2	S	146	20	19	2	S
41	5	F		1	106	16	12	5	Н	130	22	16	2	S
42	5	М	50	1	142	18	15	1	L	175	19	14	2	S
43	5	М		3	124	18	16	2	S	105	23	17	2	S
44	5	М		1	138	21	15	0	L	168	17	17	2	S
45	5	F		1	155	22	13	1	L	170	20	14	2	S
46	5	F		3						178	18	15	2	S
50	5	М	50	1	115	13	5	5	Н	155	19	14	3	S
51	5	F	90	1	149	15	9	4	Н	152	18	15	3	S
52	5	F		3	127	15	11	5	Н	157	18	13	3	S
53	5	F	50	3						141	16	15	4	Н
54	5	F		1	143	11	9	4	Н	157	12	10	4	Н
55	5	М		1	132	18	6	4	Н	147	12	15	4	Н
56	5	F	50	1	149	12	13	3	S	195	16	13	4	Н
57	5	М	50	3	103	9	12	6	Н	138	19	13	4	Н
58	5	М	90	1	131	11	15	3	S	120	20	14	4	Н
59	5	М		1	126	14	8	5	Н	160	17	8	4	Н
60	5	М		1						134	18	13	4	Н

Note. Red represents the strategic group, students below the 10th percentile rank (PR). Yellow represents the intensive group, students between the 11th and 30th PR. Green represents the on track group, students above the 30th PR.

Broad Causal Inference

Teacher Report									
Student Name	Fall Risk	Winter Risk	Change	Winter Risk	Spring Risk	Change	Fall Risk	Spring Risk	Change
Horton, Billy	2	1	1↓	1	1	-	2	1	1↓
Scott, Annabell	5	3	2↓	3	2	1↓	5	2	3↓
Sofasa, Jimmy	3	4	1↑	4	3	1↓	3	3	-
Building/District Report									
Grade 3 Risk Ratings	Fall Count	Winter Count	Change	Winter Count	Spring Count	Change	Fall Count	Spring Count	Change
Risk 0 (Low)	34%	36%	2% ↑	36%	40%	4% ↑	34%	40%	6%↑
Risk 1 (Low)	18%	21%	3%↑	21%	17%	4%↓	18%	17%	1%↓
Risk 2 (Some)	10%	12%	2%↑	12%	14%	2% ↑	10%	14%	4%↑
Risk 3 (Some)	13%	10%	3%↓	10%	9%	1%↓	13%	9%	4%↓
Risk 4 (High)	11%	9%	2%↓	9%	10%	1%↑	11%	10%	1%↓
Risk 5 (High)	8%	7%	1%↓	7%	5%	2%↓	8%	5%	3%↓
Risk 6 (High)	6%	5%	1%↓	5%	5%	-	6%	5%	1%↓
Togolo optiono foru (Totol I	Deveente>	and (Intent C	a hart)						
roggie options for: (Total	Percentage)	and (Intact Co	onort)						

Specific Causal Inferences

Group Passage Reading Fluency Performance (Only shown for groups of 10 students or less)

Connecting Individual Differences with Making an Individual Difference

• Level-1 (Measurement Occasion):

 $- Y_{tij} = \pi_{0ij} + \pi_{1ij}(time) + e_{tij}$

 Level 1 is the Outcome (Achievement) for each student in each measurement occasion in each school = <u>Intercept</u> for a given student within a given school (starting point) at Time 0 + <u>Slope</u> for a given student within a given school + <u>Leftover</u> that is not explained (for the one students and from other variables not considered and error)

Connecting Individual Differences with Making an Individual Difference

- Level-2 (Students):
 - $\pi_{0ij} = \theta_{p0j} + \theta_{pij}(a_{Pij}) + r_{0ij}$ $\pi_{1ij} = \theta_{p1j} + \theta_{pij}(a_{Pij}) + r_{1ij}$
- Level 2 Intercept (across students) = <u>Average Intercept</u> at Time 0 across all students + <u>Other predictors of all students</u>' <u>Intercept</u> (race-ethnicity, gender, etc.) + <u>Leftover</u> that is not explained (from other variables not considered and error)
- Level 2 Slope (across students) = <u>Average Slope</u> across all students + <u>Other</u> <u>predictors of all students</u>' <u>Slope</u> (race-ethnicity, gender, etc.) + <u>Leftover</u> that is not explained (from other variables not considered and error)

Connecting Individual Differences with Making an Individual Difference

- Level-3 (Schools):
 - $\quad \boldsymbol{\beta}_{\boldsymbol{\rho}\boldsymbol{0}\boldsymbol{j}} = \boldsymbol{\gamma}_{\boldsymbol{0}\boldsymbol{0}\boldsymbol{0}} + \boldsymbol{\gamma}_{\boldsymbol{\rho}\boldsymbol{q}\boldsymbol{s}}(\boldsymbol{W}_{\boldsymbol{s}\boldsymbol{j}}) + \boldsymbol{u}_{\boldsymbol{0}\boldsymbol{0}\boldsymbol{j}}$
 - $\beta_{p1j} = \gamma_{pq1} + \gamma_{pqs}(W_{sj}) + u_{10j}$
- Level 3 Intercept (across schools) = <u>Average Intercept</u> at Time 0 across all schools + <u>Other predictors of all schools</u>' <u>Intercept (RTI, PD OTL, etc.)</u> + <u>Leftover</u> that is not explained (from other variables not considered and error)
- Level 3 Slope (across all schools) = <u>Average Slope</u> across all schools + <u>Other predictors of all schools' Slope</u> (RTI, PD OTL, etc.) + <u>Leftover</u> that is not explained (from other variables not considered and error)

Latest Results - Revised

http://www.brtprojects.org

http://easycbm.com

easy 🖻 CBM	
Students Click Here	Teacher Login Username: Password: Earget Bassend2 Earget Username2

Welcome to the District easyCBM website