1 ecnnic	al Report # 09-04
The De	evelopment of K-8 Progress Monitoring Measures
Mathe	matics for Use with the 2% and General Education
Popula	tions: Grade 8
Cheng F	ei Lai
T 11 A 1	onzo
Julie Alo	
Gerald T	ʻindal

Published by

Behavioral Research and Teaching University of Oregon • 175 Education 5262 University of Oregon • Eugene, OR 97403-5262

Phone: 541-346-3535 • Fax: 541-346-5689

http://brt.uoregon.edu

Copyright © 2009. Behavioral Research and Teaching. All rights reserved. This publication, or parts thereof, may not be used or reproduced in any manner without written permission.

The University of Oregon is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, marital status, disability, public assistance status, veteran status, or sexual orientation. This document is available in alternative formats upon request.

Abstract

In this technical report, we describe the development and piloting of a series of mathematics progress monitoring measures intended for use with students in grades kindergarten through eighth grade. These measures, available as part of easyCBMTM, an online progress monitoring assessment system, were developed in 2007 and 2008 and administered to approximately 2,800 students per grade from schools across the United States in November and December of 2008 using a common item design to allow all items to be estimated on the same scale within each grade level. We analyzed the results of the piloting using a one parameter logistic (1PL) Rasch analysis. Because the results of these analyses are quite lengthy, we present the results for each grade's analysis in its own technical report, all sharing a common abstract and introduction but unique methods, results, and discussion sections.

Introduction

Progress monitoring assessments are a key component of many school improvement efforts, including the Response to Intervention (RTI) approach to meeting students' academic needs. In an RTI approach, teachers first administer a screening or benchmarking assessment to identify students who need supplemental interventions to meet grade-level expectations, then use a series of progress monitoring measures to evaluate the effectiveness of the interventions they are using with the students. When students fail to show expected levels of progress (as indicated by 'flat line scores' or little improvement on repeated measures over time), teachers use this information to help them make instructional modifications with the goal of finding an intervention or combination of instructional approaches that will enable each student to make adequate progress toward achieving grade level proficiency and content standards. In such a system, it is critical to have reliable measures that assess the target construct and are sensitive enough to detect improvement in skill over short periods of time. Because both terms are relevant to our item writing efforts, we first provide a brief synthesis of the literature on 'universal design for assessment' and then describe what is meant by 'the 2% population' before we describe the actual methods used in item creation, piloting, and evaluation.

Universal Design for Assessment

Universal Design for Assessment (UDA) is an approach to creating assessments in which test developers try to make their measures accessible to the widest possible population of students by incorporating design features that will reduce the barriers to students being able to interface successfully with the test items. In creating our mathematics items, we referred to both the National Center on Educational Outcomes' A

State Guide to the Development of Universally Designed Assessment (Johnstone, Altman, & Thurlow, 2006) and the Test Accessibility and Modification Inventory by Beddow, Kettler, and Elliott (2008).

Assessments that are universally designed encourage testing conditions that are accessible and fair to students with special needs as well as to those in the general education population. Universally designed assessments should: (a) measure true constructs while eliminating irrelevant ones, (b) recognize the diversity of the test-taker population, (c) be both concise and clear in their language, (d) have clear format and visual information, and (e) include the ability to change formatting without compromising the meaning or difficulty of the assessment results. Universally designed assessments aim to provide valid interpretation of all test-takers' abilities and skills, including those with disabilities (Johnstone, Altman, & Thurlow, 2006).

In addition to the guidelines by Johnstone et al. (2006), we focused on reducing the cognitive complexity of the mathematics items we created in an attempt to tighten the connection between the targeted construct within the NCTM mathematics Focal Point Standards and the math items. From a cognitive science perspective, cognitive complexity relates to the degree to which a particular situation requires an individual to engage in the problem solving processes. In terms of assessments, cognitive complexity can be altered by changing the way in which a problem is represented (the degree to which it requires a test taker to engage in abstract thinking to reach a solution); by limiting or expanding the necessity for planning and use of strategy; by requiring different levels of self-monitoring and evaluation; and by emphasizing or de-emphasizing the use of metacognition to explain one's understanding of the problem and its solution or

to generalize or abstract the outcome (Stevens, 2007, personal communication).

The principles of universal design for assessment guided our item creation efforts. In addition, we sought to reduce the cognitive complexity of our items through reducing the steps students would need to take to solve the math items, by reducing the language and working memory load of our items, and by consciously attempting to reduce the chance that extraneous information provided in the mathematics question stem or answer choices would confuse students. Our goal was to create mathematics items that would be appropriate for use with students from both general education and the 2% population as well as for English language learners.

The 2% Population

The Title I—Improving the Academic Achievement of the Disadvantaged;
Individuals With Disabilities Education Act (IDEA), allows approximately 20% of students with disabilities to be assessed on grade-level content standards but with modified academic achievement standards. This subgroup of students with disabilities is frequently referred to as 'the 2% student population' because federal legislation allows states to designate up to 2% of their total student population as those for whom this would be the most appropriate assessment scenario. The 2% student population may include students with disabilities (excluding the ones with the most severe cognitive deficits) or those with lower academic performance who do not respond to reading interventions persistently (McMaster, Fuchs, Fuchs, & Compton, 2005; Torgensen, Alexander, Wagner, Rashotee, Voeller, & Conway, 2001).

Germane to our work here, it is important to emphasize that students in the 2% population are expected to be assessed on grade-level content standards, but their

achievement standards may not be as high as those set for students from the general education population. Thus, in developing our mathematics item bank, we sought to create math items that would appropriately target the grade-level content standards yet would do so in a way that would render them accessible to a wider range of student ability than might be typically expected of assessment items. Our focus on reducing the cognitive and linguistic complexity of items as well as on designing the computer interface and features of the items themselves to reduce the impact of construct irrelevant barriers to student understanding was intended to provide a bank of items from which we could draw mathematics problems representing a wide range of difficulty yet all aligned to grade-level content standards.

Methods

In this technical report, we explain the development of mathematics progress monitoring measures designed for use with students in grades K-8. This development included three key steps: (a) creation of an item bank, (b) piloting of all items in the item bank to determine their difficulty, reliability, and appropriateness for use with the intended grade level, and (c) organizing of the items into a series of benchmark and progress monitoring assessments. We begin by describing the process of item creation, including background about the item specifications and guidance given to item writers during the development of the individual mathematics items. Then, we explain the piloting of the mathematics items. We outline the process we used to create multiple comparable alternate forms of progress monitoring and benchmarking assessments using the item bank information. Finally, we describe how the mathematics measured designed for use with students from the 2% population differ slightly from those designed for use

with students from the general education population, yet both share key components of universal design and are aligned to grade-level content standards.

Item Development

We used the National Council of Teachers of Mathematics (NCTM) Focal Point Standards in Mathematics as the basis for our item creation. These standards were introduced by the NCTM in 2006, and were adapted by the Oregon Department of Education and then formally adopted by the state for use to guide classroom instruction as well as statewide assessment in 2008. All items were written to target one sub-domain within a particular Focal Point Standard, with item-writers specifically referencing the intended sub-domain in the item database during item writing.

Item writer qualifications. Eight item writers were recruited from across Oregon. These individuals had experience in teaching and mathematics. Five of the item writers had worked extensively with students in Special Education programs and were familiar with their educational needs. Specific background information is provided about each of the item writers. Item writer #1, who had a Master's degree in Computer Programming, had a strong background in mathematics. He had been providing tutoring and home schooling in math since 1990. Item writer #2 had a Master's degree in Special Education. She had taught pre-Kindergarten through 5th grade and had completed 1.5 years of research work in assessment. Item writer #3 had the following qualifications: BS in Elementary Education with a Reading Endorsement; work experience with students in kindergarten and elementary grades and preschoolers with special needs; teaching experience as a substitute teacher and tutor for adults. Item writer #3 had also consulted and developed curriculum professionally. Item writer #4 had a BA in Health Education, a

Master's of Arts in Teaching (K-8 Elementary Endorsement), and additional university credits for math education. In addition to teaching students in first through fourth grade for 13 years, item writer #4 had also attended NCTM Conferences.

Item writer #5 was a retired middle school teacher who had taught students with special needs. She had a BS in Elementary Education with a Reading Endorsement (K-12) and had 25 years of teaching experience. Item writer #6 held a Master's degree in Special Education and a BA in Developmental Psychology. Her experiences included: working as a Special Education teacher and Program Coordinator for a social service program; eight years of supporting individuals with developmental disabilities; and designing functional academic curricula in mathematics, reading, and social skills.

Item writer #7, a fifth-year Ph.D. candidate in developmental psychology, had a Bachelor's and a Master's degree also in developmental psychology. While item writer #7 had completed relevant coursework such as statistics, research methods, developmental psychology, language acquisition, linguistics, and social cognition, she had also taught undergraduate-level courses including Child Development, Cognitive Development, and Language Acquisition. Finally, item writer #8 received a BA in Humanities with a concentration in Education and a Master's in Special Education. He had 3 years of experience teaching English in grades K-16 and was working in a research organization on projects related to assessments at the time he was writing mathematics items for this project. All item writers started the writing process in October 2007. The item bank was completed in August 2008.

Guidance given to item writers. Item writers were informed that the goal of this project was to create math items that would be appropriate for the 2% student population.

In describing this student population, they were told to picture students with very low academic performance, who receive special education services, and who would also likely receive significant support in the general education classrooms.

Item writers were provided specific guidelines on how they should approach the item writing process. Two major points were emphasized: (a) the importance of writing math items that reduced the cognitive complexity of the tasks, and (b) the need to preserve the integrity of the items by connecting them to grade-level content standards. Although the item-writers were told that researchers are still operationally defining the meaning of 'reducing cognitive complexity,' they were given some basic ideas to consider while completing the item-writing tasks.

First, item writers were encouraged to pick an approach that required the least amount of manipulation on the part of the student. They were reminded that there are usually several ways in which one can structure or represent mathematics operations. Examples were given to demonstrate math items that would require the least amount of manipulation in the process. Item writers were requested to write items in this manner consistently across all types of calculation problems in all formats.

When selecting numbers for use in math problems, item writers were encouraged to select numbers that were relatively easy to compute. By using easier numbers, students could demonstrate mastery of the content standard concept while reducing the likelihood that a computational error would interfere with measurement of the construct being assessed. Item writers were also asked to be selective with their word choices. They were strongly encouraged to use simple language (short words and declarative sentences). The emphasis on simple language was designed to reduce the chance that words would

present a barrier to assessing students' ability to demonstrate their mathematical knowledge.

The overall goal in item writing was to focus students' attention on a single idea.

Therefore, it was essential for item writers to: (a) have in-depth understanding of the material, (b) spend time thinking of their audience, (c) be clear and concise in their writing, and (d) avoid irrelevant language and clues when writing the items.

Other specific guidelines provided to item writers included the following:

- 1. Address key verbs such as 'recall,' 'analyze,' 'construct,' and 'recognize' that are used in the NCTM Standards;
- 2. Include necessary information in the questions so that answer choices are represented in the most simplistic and comprehensible manner;
- 3. Keep grammar structure parallel between a question and each answer option;
- 4. Avoid certain word choices in answer options such as 'All of the above,' 'None of the above,' negatives and double negatives;
- 5. Keep answer options similar in length and complexity levels; and
- 6. Ensure that all answer choices are mutually exclusive.

To increase the alignment between items in consecutive grade levels, the year-long task of writing approximately 1,100 items per grade level was divided into 23 sets, each addressing a pre-determined Focal Point Standard. Each set included 50 items per grade level in three grade levels, or 150 math items in all. Thus, for each set of items, each item writer wrote math problems aligned with similar Focal Point Standards for three grades. Item writers completed their work on three separate Excel files that were pre-formatted and named by the researchers. Item writers were encouraged to write items

so that the difficulty level progressed smoothly from grade to grade. They were asked to create multiple-choice test items with three answer choices to address the Standards.

Although examples of test items were given, item writers were given the freedom to devise comparable questions that met the Standards. Because copies of the general and specific Standards were provided to the item writers, they were expected to study and understand the Standards' requirements. Item writers were reminded of the importance of producing items that met the Standards with the following characteristics: (a) items should be simple, direct, and in the most basic form of the Standard requirements; (b) complexity should be reduced whenever possible; (c) items should use vocabulary, background knowledge and topics appropriate for students in the target grade level; and (d) the language should be simple, avoiding use of idioms, long words, passive voice, and unnecessary clauses.

Item writers were provided the EDL Core Vocabulary list as a reference for determining appropriate grade-level words to use in items and distractors. They were asked to try to use words a minimum of 2 grade levels below the grade level for which they were writing whenever possible. Finally, researchers stressed the importance of creating original items, although item writers were given print and online resources as sources of inspiration, ideas, or information.

In writing the distractors, item writers were reminded to maintain three answer choices that were similar in length and complexity level, differing only in content. When constructing incorrect choices, they were informed that these distractors should be relevant to the problem. Item writers were requested to use related words or numbers in the distractors, so that each answer choice appeared to be a relevant option.

Design of graphics. As item writers created finished their sets, they provided rough sketches and descriptions of the graphics needed to complete each item. These sketches and descriptions were sent to a computer graphic artist, who created original computer renderings of each image required by the items. These graphics were then saved as .png files in a database and later imported to the online mathematics test interface.

Design of computer interface. Because these items were designed specifically for use in online computer delivered assessments, the research team worked closely with the computer programmer to ensure that the items would be able to be displayed appropriately in an online testing environment. The computer programmer provided guidance in the original item writing specifications, assisting with the development of computer code to enable a reliable and efficient transfer of the items from the Excel files provided by the item writers to the computer database and subsequent online display of the items.

Items were designed to be displayed one at a time on the screen, with a large text box on the left side of the screen where the question stem/item was displayed and the three answer options on the right side of the screen, along with the answer choice "I don't know" (see Figure 1). Students select their answer by clicking anywhere in the large rectangular area corresponding with the answer option they want to pick. Once they are satisfied with their response, they click the "Next" button at the bottom right corner of their screen, and the computer displays the next item. Once a student has clicked on the "Next" button, they are not able to go back to a previous item.

The size of the question stem and answer options is optimized for display without requiring any 'scrolling' to view all parts of the question and all possible answer options. However, should they need to enlarge the text to enable them to read it better, students are able to magnify the size of the display by adjusting their computer's view to zoom in. The program is designed to be compatible with Firefox, Safari (on a Mac Operating System), and Internet Explorer (on a Windows Operating System).

Each time a question is displayed, the computer randomizes the order of the answer options, except that the "I don't know" option is always retained as the final answer option on the page. Thus, even when two students are looking at the same question at the same time, it is likely that the answer options will appear in a different order on the right side of their screen. This random display feature built into the programming helps reduce the impact of cheating.

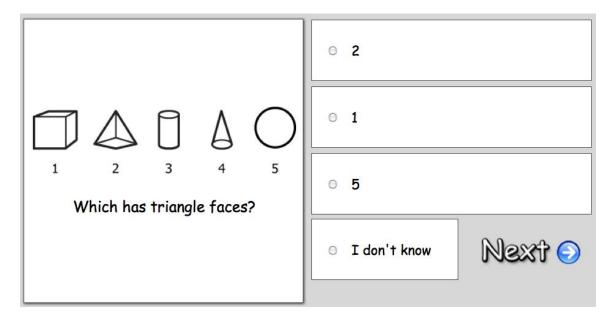


Figure 1
Sample Question Illustrating Computer Display of Item

Item Review Process

A team of six researchers reviewed all items beginning June 2008. These

researchers all had experience with assessment and item creation. Two of the researchers had earned doctorates in education, one with an emphasis on assessments. One of the researchers had a Master's in Special Education and had participated in a special program throughout his graduate studies focused on educational assessments. He had been the primary contact for the item writers for the previous year and was very familiar with the project. Of the remaining three researchers, one was a Ph.D. student in Educational Leadership, one was a Master's student in Speech Language Pathology, and one was a full-time research assistant at a research institute at the university where this research was conducted.

During the item review process, the researchers studied specific aspects of the items, including general clarity and alignment with the standards, formatting, wording, and answer choices. Researchers reviewed the items individually and as a group. Each researcher spent on average ten hours per week from June to July 2008 reviewing items individually. Beginning in July and continuing for 6 weeks, the team met regularly as a group in 2-3 hour meetings, 5 days a week. During group reviews, the team focused primarily on standardizing formats, verifying answer choices, and identifying errors. As errors were found, they were corrected, resulting in approximately 6,600 items to be piloted in the fall of 2008.

Item Piloting

Teachers from grades K-8 were recruited to participate in the pilot in three ways: through announcements posted on the easyCBM (Alonzo, Ulmer, Tindal, & Glasgow, 2006) and DIBELS websites, through direct recruitment of teachers using existing cooperative relationships between the districts and the research institute that developed

the assessments, and through word of mouth. Item piloting for Kindergarten through Fourth Grade began on November 10th and ended on December 5th. Item piloting for Fifth Grade began on November 10th and ended on December 15th. Districts interested in participating in the piloting were provided a letter of introduction that described the piloting process and explained that to protect confidentiality, no identifying information would be collected on students, teachers, schools, or districts participating in the piloting.

Teachers were provided with specific instructions on how to access the piloting website and were instructed to have their students select their appropriate grade level from the list of grades provided and then to monitor while their students completed the online test. Students were encouraged to use scratch paper if they needed it, but use of calculators was prohibited. Each student was presented with 25 items each time he/she logged in to the testing website. The first 20 items on each test were randomly selected by the computer from the approximately 1,100 items available at that grade level. The final 5 items on each grade level test were always the same. These five items, selected for their range of difficulty and coverage of all Focal Point Standards within a grade level, were kept constant to allow for calibrating all items within a grade level to the same scale. In keeping with Kolen and Brennan's (2004) recommendation, these five items always appeared in the same order and place on each test.

Data Analysis

To analyze the items, we used a 1PL Rasch model and the software Winsteps 3.61 (Linacre, 2006). We chose the one parameter model rather than a more complicated one for our analysis out of a desire for parsimony and because it appears to fit the data quite well. Because we gave students the option of selecting "I don't know," we hoped to

reduce the potential impact of guessing. Key item parameters we analyzed include *Mean Square Outfit* (items falling outside the desired range of 0.50 to 1.50 were examined in greater detail before being retained in the item bank for future use, *Standard Error of Measure*, and *Measure* (an estimate of the item's difficulty). In addition to these item parameters, we also analyzed how the distractors functioned. In all cases, we sought to retain for our item bank items where students with the highest average estimated ability selected the correct answer choice, while students with lower average estimated ability selected the two other answer choices. We also sought items with a wide range of difficulty, cognizant of the need to have enough items to use for assessments designed for use with students from the 2% population as well as with students from the general education population.

Results

Data from each grade level were analyzed separately. In all, we analyzed 173 Kindergarten items, 243 Grade 1 items, 1,167 Grade 2 items, 1,167 Grade 3 items, 1,149 Grade 4 items, 1,150 Grade 5 items, 953 Grade 6 items, 912 Grade 7 items, and 902 Grade 8 items. The results of these analyses are reported separately by grade, each in its own technical report.

Grade 8

Of the Grade 8 items, 8 items were over-fit (Mean Square Outfit ranging from 0.30 to 0.49 with an average Mean Square Outfit of 0.45). Because distractor analysis indicated that all over-fit items were functioning appropriately (students with the highest average estimated ability selected the correct answer choice, while students with lower estimated ability selected distractors), all over-fit items were retained for the item bank.

In addition to the over-fit items, 81 items were under-fit (Mean Square Outfit ranging from 1.51 to 4.05 with an average Mean Square Outfit of 2.53). Of these, 53 items were retained for the item bank when distractor analysis indicated that they were functioning appropriately. In all, 28 items were removed from the Grade 8 item bank because distractor analysis indicated that the correct answer choice was not selected by the students with the highest average estimated ability. Table 1 presents the results of the Rasch analysis for the Grade 8 items, while Table 2 presents the results of distractor analysis.

Discussion

We used the results of the Rasch analysis to select items from the item bank to use in the creation of ten alternate forms of progress monitoring measures and three benchmark screener forms appropriate for use with students in eighth grade for each of the three Focal Point Standards, resulting in a total of 30 eighth-grade math progress monitoring measures and nine benchmark screeners. Each form of the measures was comprised of 16 unique items, and all alternate forms within each Focal Point were of comparable difficulty, as determined by calculating the mean *measure* of the items on each form.

Table 3 lists this information for the *Data Analysis, Number and Operation, and Algebra* measures. Mean measure of forms 1 – 10 of the *Data Analysis, Number and Operation, and Algebra* progress monitoring measures ranged from -0.68 to -0.66, with an average of -0.67 across all ten forms. Mean measure of forms 1 – 3 of the *Data Analysis, Number and Operation, and Algebra* benchmark measures ranged from -0.67 to -0.66, with an average of -0.67 across all three forms. Table 4 lists information about

each of the alternate forms of the *Geometry and Measurement* measures for Grade 8. Mean measure of forms 1-10 of the *Geometry and Measurement* progress monitoring measures ranged from -0.10 to -0.09, with an average of -0.10 across all ten forms. Mean measure of forms 1-3 of the *Geometry and Measurement* benchmark measures ranged from -0.10 to -0.09, with an average of -0.09 across all three forms. Table 5 lists the alternate forms of the progress monitoring and benchmark measures aligned with the *Algebra* Focal Point Standards. Mean measure of forms 1-10 of the *Algebra* progress monitoring measures range from 0.36 to 0.37, with an average of 0.37 across all ten forms. The mean measure of forms 1-3 of the *Algebra* benchmark measures was 0.37 across all three forms. Table 5 lists information about each of the alternate forms of the *Algebra* measures for eighth grade.

Thus, within the progress monitoring measures developed for use in eighth grade, those aligned with the *Data Analysis*, *Number and Operation*, *and Algebra* Focal Point Standard are designed to be the easiest, followed by those aligned with the *Geometry and Measurement* Focal Point Standard. The measures aligned with the *Algebra* Focal Point Standard are designed to be the most challenging of the eighth-grade progress monitoring mathematics measures on easyCBMTM.

Table 1 Results of Rasch Analysis, Grade 8

Item	Focal Point	Domain	Measure	Count	Score	Error	Mean Square Outfit	Discrim
80001	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.1	46	23	0.33	0.75	1.46
80002	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.36	45	31	0.35	0.89	1.13
80003	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.5	46	30	0.33	0.92	1.34
80004	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.73	47	27	0.34	0.8	1.14
80005	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.96	43	28	0.35	1.05	0.82
80006	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.92	1894	1264	0.05	0.81	1.21
80007	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.76	46	38	0.42	0.73	1.11
80008	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.58	45	16	0.36	0.92	1.13
80009	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.07	47	31	0.33	0.67	1.57
80010	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.44	46	27	0.35	0.74	1.26
80011	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.11	48	25	0.32	0.97	1.13

80012	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.09	45	24	0.33	0.73	1.59
80013	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.76	44	16	0.34	1	0.94
80014	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.31	45	10	0.39	0.82	0.96
80015	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.83	48	19	0.33	1.43	0.31
80016	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.83	41	15	0.38	1.39	0.78
80017	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.9	48	16	0.35	0.61	1.45
80018	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.23	45	18	0.34	1.37	0.23
80019	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.77	45	13	0.37	1.18	0.92
80020	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.24	47	22	0.33	0.69	1.53
80021	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.99	45	13	0.37	1.2	0.81
80022	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.08	48	15	0.36	0.81	1.17
80023	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.82	47	15	0.34	1.14	0.87
80024	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.62	44	9	0.43	0.87	1.16

80025	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.58	46	15	0.36	0.69	1.3
80026	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.37	42	10	0.4	0.81	1.14
80027	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.34	44	16	0.35	0.92	1.08
80028	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.45	47	8	0.43	1.26	1.07
80029	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.57	44	14	0.37	0.98	0.95
80030	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.89	41	14	0.38	0.67	1.34
80031	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.63	43	8	0.42	1.49	0.58
80032	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.49	44	19	0.35	1.45	0.45
80033	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.85	43	13	0.38	1.23	0.79
80034	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.74	45	14	0.34	1.05	0.93
80035	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.32	44	18	0.34	0.74	1.44
80036	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.41	43	18	0.35	0.93	1.05
80037	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.48	46	26	0.32	1.24	0.33
80038	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.36	43	17	0.35	1.32	0.79

80039	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.64	41	14	0.36	1.18	0.51
80040	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.54	47	11	0.38	1.19	0.93
80041	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.85	46	8	0.42	1.79	0.63
80042	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.02	46	15	0.37	0.81	1.13
80043	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.3	46	18	0.33	1.16	0.74
80044	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.65	43	16	0.35	1.01	0.85
80045	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.65	47	18	0.35	1.33	0.58
80046	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.09	47	20	0.32	1.06	0.7
80047	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.92	48	15	0.36	1.4	0.69
80048	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.85	47	16	0.35	3.25	-0.33
80049	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	2.01	44	7	0.46	1.98	0.76
80050	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.22	44	20	0.34	1.26	0.58
80051	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.85	45	14	0.36	0.88	1.05

80052	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.16	42	21	0.33	1.08	0.65
80053	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.02	44	20	0.34	0.81	1.28
80054	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.05	44	23	0.34	0.93	1.19
80055	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.47	44	18	0.35	0.93	1.04
80056	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.39	45	25	0.34	1.6	0.24
80057	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.68	46	28	0.34	0.96	0.95
80058	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.06	43	22	0.37	1.78	0.51
80059	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.07	45	22	0.33	1.09	0.74
80060	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.22	45	21	0.33	1.91	-0.21
80061	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.93	46	38	0.44	0.82	1.08
80062	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.87	44	30	0.37	0.59	1.47
80063	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.65	47	30	0.35	0.53	1.62
80064	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.71	41	33	0.47	0.74	1.13
80065	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.31	41	29	0.38	0.65	1.34

80066	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.57	46	28	0.34	0.87	1.16
80067	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.88	42	34	0.44	0.62	1.21
80068	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.26	43	32	0.38	0.78	1.13
80069	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.14	46	24	0.34	0.73	1.45
80070	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.35	43	33	0.42	0.71	1.1
80071	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.76	45	30	0.35	1.25	1.14
80072	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.07	47	26	0.34	0.75	1.42
80073	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.62	47	30	0.34	0.79	1.24
80074	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.78	44	29	0.35	0.96	0.95
80075	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.22	47	28	0.33	1.02	1.02
80076	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.37	41	17	0.36	0.72	1.44
80077	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.67	44	28	0.35	0.94	1.21
80078	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.04	46	21	0.33	0.77	1.38
80079	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.45	46	35	0.37	0.77	1.12

80080	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.3	46	24	0.34	0.72	1.37
80081	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.5	47	19	0.34	1.01	0.89
80082	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.21	46	22	0.32	0.89	1.31
80083	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.57	45	12	0.36	0.95	0.97
80084	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	2.44	46	8	0.44	1.26	0.95
80085	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.47	44	9	0.41	1.48	0.71
80086	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.36	45	19	0.34	0.8	1.34
80087	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.55	44	19	0.34	0.94	1.05
80088	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.82	45	10	0.44	0.8	1.05
80089	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.63	44	16	0.35	1.48	0.74
80090	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.31	42	11	0.41	1.72	0.45
80091	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.32	45	9	0.39	1.45	0.74
80092	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.65	45	11	0.37	1.68	0.68

80093	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.09	46	13	0.38	1.13	0.98
80094	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.34	45	12	0.39	1.19	0.81
80095	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.79	47	16	0.35	0.94	0.95
80096	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.89	47	16	0.35	1.59	0.49
80097	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.89	45	8	0.46	1.04	0.91
80098	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.17	47	15	0.37	2.13	0.46
80099	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	2.53	48	6	0.47	0.65	1.11
80100	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	2.39	46	8	0.44	1.58	0.64
80151	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.68	47	32	0.34	0.88	1.07
80152	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.51	45	24	0.33	0.78	1.45
80153	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.94	46	16	0.36	0.78	1.26
80154	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.78	45	30	0.34	0.87	1.07
80155	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.41	52	31	0.32	1.04	0.78

80156	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.68	47	18	0.34	1.13	0.75
80157	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.36	46	17	0.33	1.16	0.67
80158	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.6	46	37	0.4	0.64	1.25
80159	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.18	48	33	0.35	1.08	0.74
80160	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.35	48	26	0.33	1.05	0.69
80161	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.42	45	17	0.34	0.69	1.55
80162	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.47	46	20	0.33	1.09	0.71
80163	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.41	43	11	0.39	0.59	1.41
80164	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.96	45	17	0.36	2.3	0.66
80165	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.84	45	15	0.35	0.91	1.06
80166	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.3	46	12	0.38	0.77	1.18
80167	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.22	45	15	0.36	0.93	1.15
80168	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.88	46	9	0.42	1.25	0.71

80169	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.14	45	12	0.39	1.27	1
80170	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.02	45	23	0.35	0.76	1.23
80171	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.05	45	14	0.37	1.27	0.69
80172	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.34	45	18	0.35	0.98	0.91
80173	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.94	44	29	0.35	1.61	0.26
80174	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.12	47	15	0.35	1.19	0.95
80175	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.89	43	12	0.37	1.09	0.82
80176	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.31	47	18	0.32	0.95	1.09
80177	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.65	46	10	0.38	1.39	1.07
80178	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.7	47	18	0.35	1.05	0.88
80179	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.54	47	9	0.4	1.25	0.82
80180	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.48	47	12	0.37	0.78	1.15
80181	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	-1.96	48	38	0.38	1.08	0.94

80182	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.94	46	14	0.36	1.13	0.75
80183	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.61	46	17	0.32	1.19	0.46
80184	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.69	46	14	0.34	0.72	1.36
80185	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.44	53	30	0.31	0.88	1.32
80186	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.75	47	7	0.44	0.68	1.18
80187	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.77	47	18	0.34	1.26	0.69
80188	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.08	44	19	0.35	0.78	1.24
80189	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.99	45	11	0.36	1.04	0.98
80190	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.62	46	27	0.34	1.12	0.82
80191	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.77	46	29	0.33	0.85	1.24
80192	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.45	46	17	0.34	1.19	0.71
80193	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.35	45	12	0.41	1.76	0.53
80194	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.42	42	11	0.4	0.82	1.14

80195	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.99	48	13	0.36	1.13	0.77
80196	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.73	45	18	0.35	1.12	0.85
80197	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	2.11	47	6	0.45	1.51	0.81
80198	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.51	45	18	0.34	0.96	0.96
80199	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.95	44	17	0.36	1.78	0.1
80200	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.89	47	15	0.36	1.05	1.01
80201	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.88	48	41	0.43	0.65	1.16
80202	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-2.06	46	39	0.45	0.48	1.24
80203	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.06	47	32	0.36	0.61	1.42
80204	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.91	46	29	0.34	1.32	0.54
80205	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.81	46	35	0.4	1.11	1.13
80206	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.39	45	34	0.38	0.99	0.95
80207	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.51	47	36	0.37	1.03	0.89

80208	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-2.31	45	38	0.47	1.26	0.93
80209	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.19	44	31	0.37	1.01	0.93
80210	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.64	44	26	0.34	1.03	0.84
80211	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.95	47	30	0.35	0.66	1.4
80212	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.15	40	30	0.4	0.61	1.4
80213	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.53	48	38	0.38	0.81	1
80214	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.81	44	28	0.35	0.96	0.83
80215	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.44	46	25	0.33	0.83	1.33
80216	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.71	44	27	0.33	0.84	1.34
80217	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.81	45	36	0.4	0.71	1.09
80218	Geometry and Measurement	Use similar triangles to find unknown lengths.	-2.07	43	34	0.45	0.6	1.19
80219	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.64	45	35	0.39	0.86	0.95
80220	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.63	57	44	0.34	0.94	1.01
80221	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.31	44	34	0.39	0.73	1.15

80222	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.84	42	28	0.37	0.72	1.32
80223	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.4	45	32	0.37	0.61	1.43
80224	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.47	44	33	0.39	1.04	1.14
80209	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.19	44	31	0.37	1.01	0.93
80210	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.64	44	26	0.34	1.03	0.84
80211	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.95	47	30	0.35	0.66	1.4
80212	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.15	40	30	0.4	0.61	1.4
80213	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.53	48	38	0.38	0.81	1
80214	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.81	44	28	0.35	0.96	0.83
80215	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.44	46	25	0.33	0.83	1.33
80216	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.71	44	27	0.33	0.84	1.34
80217	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.81	45	36	0.4	0.71	1.09
80218	Geometry and Measurement	Use similar triangles to find unknown lengths.	-2.07	43	34	0.45	0.6	1.19
80219	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.64	45	35	0.39	0.86	0.95

80220	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.63	57	44	0.34	0.94	1.01
80221	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.31	44	34	0.39	0.73	1.15
80222	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.84	42	28	0.37	0.72	1.32
80223	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.4	45	32	0.37	0.61	1.43
80224	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.47	44	33	0.39	1.04	1.14
80225	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.46	45	26	0.33	0.94	1.06
80226	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.96	41	26	0.35	0.7	1.64
80227	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.08	43	17	0.35	1.2	0.57
80228	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.8	43	25	0.35	0.86	1
80229	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.19	42	30	0.36	0.8	1.27
80230	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.36	44	33	0.38	0.82	1.03
80231	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.04	43	22	0.35	0.63	1.46
80232	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.95	1888	592	0.06	1.13	0.96
80233	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.57	45	18	0.34	1.2	0.82

80234	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.95	46	17	0.34	0.74	1.32
80235	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.31	44	9	0.41	0.99	0.98
80236	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	2.14	44	6	0.46	0.54	1.2
80237	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.17	44	22	0.34	0.97	0.95
80238	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.24	44	11	0.38	1.56	0.68
80239	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.28	45	12	0.4	1.17	0.84
80240	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.73	47	13	0.35	1.13	0.89
80241	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.88	46	32	0.35	0.63	1.43
80242	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.04	43	20	0.34	0.79	1.44
80243	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.69	46	27	0.33	0.76	1.57
80244	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.55	46	28	0.33	0.8	1.38
80245	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.1	45	20	0.33	1.3	0.9
80246	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.1	45	19	0.34	0.8	1.26
80247	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.23	46	20	0.33	0.66	1.85

80248	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.18	42	17	0.36	1.08	0.79
80249	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.03	47	21	0.33	0.94	1.07
80250	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.73	43	14	0.37	1.04	0.93
80251	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.94	43	28	0.36	0.91	1.12
80252	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	0.5	1879	742	0.05	1.26	0.66
80253	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.15	45	22	0.33	0.87	1.16
80254	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-1.66	45	37	0.42	0.65	1.12
80255	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.22	43	23	0.33	0.94	1.14
80256	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.04	43	23	0.35	0.85	1.22
80257	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	0.03	44	21	0.33	0.83	1.43
80258	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.63	43	25	0.34	0.74	1.45
80259	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.67	47	30	0.34	0.68	1.53
80260	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.42	43	27	0.35	0.71	1.52

80261	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.2	44	37	0.44	0.64	1.2
80262	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.9	45	38	0.46	0.62	1.14
80263	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	0	0	0	0	1	1
80264	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.11	46	26	0.34	1.09	0.78
80265	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.52	44	27	0.35	0.96	1.14
80266	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.62	44	33	0.41	0.45	1.43
80267	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.17	48	27	0.33	1.03	0.94
80268	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.57	43	33	0.41	1.85	0.63
80269	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.27	44	22	0.33	0.79	1.38
80270	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.21	43	30	0.37	0.92	1
80271	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.08	47	24	0.33	0.84	1.21
80272	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.39	46	32	0.36	0.73	1.25

80273	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.21	46	25	0.33	0.78	1.4
80274	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.45	48	17	0.34	1.44	0.49
80275	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.77	46	31	0.36	0.85	1.04
80276	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.33	46	26	0.34	1.03	0.9
80277	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.68	45	30	0.35	0.81	1.31
80278	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.07	45	19	0.34	1.21	0.86
80279	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.72	44	27	0.34	0.91	1.03
80280	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.01	48	26	0.32	1.1	0.89
80281	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.96	44	30	0.36	1.12	0.82
80282	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.18	43	22	0.34	0.83	1.24
80283	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.81	46	30	0.34	1.1	0.87
80284	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.5	44	33	0.38	0.99	0.98
80285	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.86	45	29	0.34	0.81	1.41

80286	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.54	47	28	0.33	1.2	0.56
80287	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.11	42	19	0.37	1.02	0.97
80288	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.21	44	23	0.35	0.96	1.01
80289	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.99	45	31	0.35	0.75	1.26
80290	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	0.73	46	15	0.36	0.91	1.06
80291	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.23	46	23	0.33	1.07	0.74
80292	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.67	45	35	0.39	0.63	1.29
80293	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.46	47	30	0.36	0.77	1.19
80294	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1	45	32	0.36	0.76	1.17
80295	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-2.17	45	38	0.44	0.74	1.02
80296	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-2.57	47	42	0.51	0.49	1.19
80297	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.26	47	25	0.33	0.98	0.98
80298	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.18	46	34	0.38	0.62	1.32

80299	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.44	46	27	0.34	0.81	1.29
80300	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.98	45	35	0.39	0.84	1.12
80301	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.21	46	33	0.37	0.75	1.27
80302	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.7	41	22	0.36	0.96	1.15
80303	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.24	44	22	0.35	0.96	0.98
80304	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.15	45	22	0.35	0.83	1.18
80305	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.95	47	27	0.33	0.73	1.36
80306	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.06	46	32	0.35	0.77	1.21
80307	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.97	44	27	0.34	0.71	1.49
80308	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	1.19	44	12	0.39	1.49	0.58
80309	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.48	43	33	0.39	0.82	1.01
80310	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.56	44	26	0.35	1.17	0.88
80311	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.46	45	24	0.34	0.7	1.6

80312	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.12	45	25	0.33	1.1	0.54
80313	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.12	46	20	0.33	1.01	0.93
80314	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.83	46	17	0.34	1.02	1.09
80315	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.67	43	16	0.36	0.92	1.06
80316	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.71	45	16	0.35	1.46	0.34
80317	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.65	45	15	0.35	1.09	0.88
80318	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.09	46	21	0.35	0.91	1.08
80319	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.04	44	21	0.33	0.78	1.43
80320	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.26	48	22	0.33	0.94	1.03
80321	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.45	46	20	0.34	0.89	1.15
80322	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.68	44	28	0.35	0.61	1.63
80323	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.45	46	20	0.33	0.97	1.03
80324	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.48	45	26	0.34	0.97	0.89

80325	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.61	48	18	0.34	1.02	0.91
80326	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.36	44	13	0.37	0.83	1.26
80327	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.34	43	9	0.4	0.93	1.07
80328	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	-0.73	45	28	0.35	0.98	0.95
80329	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.69	39	12	0.39	1.74	0.44
80330	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.92	42	11	0.39	1.16	0.82
80331	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	-0.05	43	21	0.35	0.78	1.31
80332	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.14	43	12	0.38	1.09	0.89
80333	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.39	45	12	0.38	1.28	0.81
80334	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	-1.07	46	29	0.35	0.66	1.44
80335	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.45	45	23	0.33	0.73	1.52
80336	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.36	42	17	0.36	2.17	0.01
80337	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.11	46	22	0.33	0.98	1.11
80338	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.02	42	21	0.34	0.74	1.54

80339	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.1	41	19	0.36	1.84	-0.07
80340	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.06	46	23	0.33	0.87	1.08
80341	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.75	47	16	0.35	1	0.95
80342	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.23	43	19	0.35	0.88	1.26
80343	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.88	45	16	0.35	1.12	0.64
80344	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.86	46	15	0.35	0.88	1.07
80345	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.29	42	11	0.4	0.87	1.15
80346	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.09	45	21	0.33	0.84	1.28
80347	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	2.54	42	5	0.52	1.04	1.02
80348	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.72	47	10	0.41	1.14	0.9
80349	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.7	45	9	0.41	1.97	0.42
80350	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.13	47	15	0.35	0.88	1.18
80351	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.11	43	20	0.35	0.84	1.16
80352	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.12	47	26	0.34	1.07	0.67
80353	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.29	44	9	0.4	1.78	0.64

80354	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.57	47	11	0.39	1.22	0.9
80355	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.12	45	20	0.32	1.08	0.65
80356	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.25	44	11	0.39	1.86	0.96
80357	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.47	47	13	0.39	1.44	0.74
80358	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.43	48	35	0.37	1.03	0.67
80359	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.33	46	27	0.33	0.85	1.2
80360	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.08	46	24	0.32	0.84	1.35
80361	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.23	44	24	0.34	0.9	1.39
80362	Geometry and Measurement	Use similar triangles to find unknown lengths.	2.12	45	7	0.45	1.68	0.67
80363	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.11	45	23	0.33	0.79	1.34
80364	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.23	46	24	0.34	0.74	1.36
80365	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.12	44	24	0.34	1.04	0.78
80366	Geometry and Measurement	Use similar triangles to find unknown lengths.	1.81	45	7	0.44	1.3	0.81
80367	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.89	44	16	0.35	1.33	0.25

80368	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.29	44	24	0.33	1.01	1.03
80369	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.42	45	27	0.34	0.73	1.49
80370	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.33	44	25	0.34	0.98	0.93
80371	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.76	46	13	0.35	1.01	0.88
80372	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	1.64	45	8	0.43	1.57	0.68
80373	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	1.72	46	9	0.41	1.86	0.6
80374	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.7	46	17	0.35	1.24	0.58
80375	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	2.05	47	5	0.49	1.36	0.86
80376	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.1	46	23	0.31	1.29	0.45
80377	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.05	45	24	0.34	0.9	1.06
80378	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.49	47	18	0.35	0.75	1.27
80379	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.41	46	27	0.34	0.71	1.42
80380	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.61	45	27	0.35	0.59	1.54
80381	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.98	46	8	0.43	0.7	1.13

80382	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.71	45	15	0.36	1.18	0.79
80383	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.38	48	12	0.37	1.17	0.67
80384	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.05	45	13	0.36	1.21	0.87
80385	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.65	47	17	0.34	0.9	0.95
80386	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.12	47	16	0.36	0.69	1.34
80387	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.91	48	16	0.34	1.04	0.94
80388	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.57	45	10	0.41	0.87	1.1
80389	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.94	45	14	0.37	1.93	0.53
80390	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.31	46	21	0.33	1.65	0.29
80391	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.14	40	18	0.35	0.9	1.25
80392	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.81	47	17	0.34	1	0.96
80393	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.38	45	18	0.33	1.04	0.81
80394	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.21	47	22	0.32	1.75	-0.36

80395	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.37	46	19	0.34	0.92	1.01
80396	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.11	45	25	0.34	1.66	0
80397	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.08	42	11	0.4	1.73	0.89
80398	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.32	44	8	0.41	0.82	1.09
80399	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.55	46	17	0.34	1.66	0.5
80400	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.49	47	18	0.35	0.87	1.18
80401	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.28	45	31	0.36	0.95	0.91
80402	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.7	46	27	0.36	0.62	1.43
80403	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-2.17	46	39	0.47	0.88	0.98
80404	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.05	45	24	0.35	0.91	1.12
80405	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.86	45	29	0.37	0.78	1.17
80406	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.49	44	33	0.4	0.64	1.24
80407	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.34	44	32	0.38	0.82	1.15

80408	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.87	47	31	0.34	0.92	1.11
80409	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.38	46	25	0.34	1.65	0.11
80410	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	0.27	47	18	0.32	0.84	1.36
80411	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.37	44	26	0.35	0.77	1.31
80412	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.03	47	24	0.33	0.93	1.08
80413	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.12	46	31	0.37	0.55	1.43
80414	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.51	46	35	0.39	0.76	1.1
80415	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	0.19	45	22	0.34	0.79	1.32
80416	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	0.04	45	20	0.33	0.77	1.53
80417	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.09	46	27	0.34	0.95	0.93
80418	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	0.19	43	20	0.35	1.14	0.89
80419	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	0	45	21	0.33	0.86	1.22

80420	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.16	45	22	0.34	0.85	1.17
80421	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.04	46	19	0.33	0.75	1.43
80422	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.09	47	22	0.33	1.25	0.58
80423	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.19	46	22	0.33	0.99	0.98
80424	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.74	50	29	0.32	0.96	0.94
80425	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.48	43	16	0.36	1.26	0.94
80426	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.11	43	32	0.39	0.89	1.12
80427	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.47	48	28	0.32	0.87	1.2
80428	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.51	43	16	0.36	0.79	1.25
80429	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.05	39	19	0.36	0.91	1.1
80430	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.26	45	21	0.34	0.94	1.25
80431	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	0.36	45	21	0.33	1.6	-0.35

80432	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.01	47	31	0.35	1.05	0.88
80433	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.07	47	24	0.34	0.78	1.31
80434	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	0.81	48	13	0.36	3.09	-0.22
80435	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.43	42	24	0.34	0.9	1.27
80436	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.15	45	21	0.33	1.04	0.82
80437	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.4	46	26	0.33	0.84	1.3
80438	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.12	44	25	0.34	1.11	0.76
80439	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.59	44	28	0.34	1.29	0.51
80440	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.4	44	26	0.34	0.68	1.54
80441	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.89	46	30	0.34	0.8	1.27
80442	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.38	46	25	0.33	0.85	1.05
80443	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.26	44	23	0.34	0.77	1.41

80444	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.15	45	31	0.34	0.83	1.27
80445	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.32	46	18	0.34	1.61	0.37
80446	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.15	46	23	0.32	0.8	1.45
80447	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.12	46	21	0.33	0.75	1.5
80448	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.31	46	25	0.33	0.98	1.02
80449	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.02	43	22	0.37	0.79	1.18
80450	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.33	45	18	0.33	1.02	0.87
80451	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.76	46	29	0.34	0.71	1.42
80452	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.1	46	30	0.35	0.95	0.83
80453	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.42	46	20	0.34	0.94	1.04
80454	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	1.26	44	11	0.4	1.28	0.98

80455	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.45	48	19	0.33	1.59	0.09
80456	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.36	45	21	0.34	0.68	1.51
80457	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.48	47	27	0.33	1.49	0.37
80458	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.27	44	23	0.33	0.9	1.13
80459	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.08	47	22	0.32	0.87	1.2
80460	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.07	42	19	0.37	1.1	0.89
80461	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.02	47	12	0.37	0.88	1.1
80462	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.78	45	17	0.34	0.86	1.13
80463	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.16	47	14	0.36	1.24	0.72
80464	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.94	45	14	0.36	0.78	1.19
80465	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.59	45	29	0.34	1.13	0.81
80466	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.02	43	22	0.37	0.82	1.17
80467	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.43	41	18	0.37	1.28	0.81
80468	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.57	32	8	0.49	1.35	0.82

80469	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.34	44	12	0.38	0.87	1.19
80470	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.15	42	12	0.39	0.87	1.05
80471	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.98	46	14	0.35	1.12	0.9
80472	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.89	45	16	0.36	0.86	1.14
80473	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.23	45	16	0.35	0.79	1.22
80474	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.02	43	22	0.35	0.91	1.14
80475	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.36	40	18	0.37	0.73	1.36
80476	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.79	48	31	0.33	0.85	1.23
80477	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.36	45	21	0.34	0.74	1.39
80478	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.09	45	12	0.37	0.77	1.2
80479	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.85	45	16	0.36	0.8	1.11
80480	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	2	47	7	0.44	1.12	1

80481	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.99	47	16	0.34	0.93	1.27
80482	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.25	40	18	0.36	1.38	0.4
80483	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.72	42	14	0.36	1.15	0.61
80484	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.29	45	15	0.36	1.12	0.85
80485	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.82	48	19	0.34	0.76	1.31
80486	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.1	48	16	0.34	1.07	0.85
80487	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.62	44	11	0.38	0.95	0.99
80488	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.68	44	8	0.42	1.32	0.85
80489	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.2	45	11	0.39	1.34	0.74
80490	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	2.14	46	7	0.43	2.89	0.53
80491	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.41	45	18	0.35	0.93	1.1
80492	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.51	43	18	0.37	0.69	1.37
80493	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.59	46	10	0.41	1	0.91

80494	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.25	44	12	0.4	1.14	0.99
80495	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.12	42	17	0.36	1.01	0.87
80496	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.62	46	11	0.39	1.29	0.81
80497	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.2	45	12	0.37	1.17	1
80498	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.91	44	8	0.46	1.82	0.57
80499	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.38	46	14	0.37	1.6	0.52
80500	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	2.25	46	8	0.45	0.95	1.03
80506	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.64	46	16	0.35	1	0.9
80518	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.33	44	17	0.35	1.3	0.61
80551	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.9	44	27	0.34	0.86	1.28
80552	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.41	44	33	0.39	0.87	0.96
80553	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-1.32	46	31	0.36	0.65	1.34
80554	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	0.42	45	22	0.34	0.77	1.37

80555	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.19	44	24	0.34	0.61	1.71
80556	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.76	48	31	0.34	1.95	0.23
80557	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.6	48	29	0.34	0.99	0.96
80558	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.15	48	24	0.32	1.03	0.98
80559	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.46	46	25	0.34	1.44	0.56
80560	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.46	49	36	0.38	0.63	1.22
80561	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.79	48	36	0.36	0.62	1.38
80562	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.32	44	30	0.37	0.88	0.98
80563	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.71	46	37	0.4	0.72	1.17
80564	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.05	44	21	0.36	0.84	1.19
80565	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.18	47	32	0.34	0.75	1.38
80566	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.74	50	37	0.36	0.89	1.15

80567	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.05	45	37	0.43	0.54	1.24
80568	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.26	45	31	0.37	0.56	1.49
80569	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.73	45	36	0.41	0.79	1.12
80570	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.42	46	26	0.35	0.92	1.11
80571	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.48	47	28	0.35	0.8	1.27
80572	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.19	47	34	0.36	1.01	0.91
80573	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.41	48	28	0.31	0.89	1.29
80574	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.45	44	25	0.34	0.71	1.62
80575	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.59	46	17	0.34	0.83	1.4
80576	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.78	48	33	0.34	0.92	0.99
80577	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.94	43	12	0.37	1.07	1.17
80578	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.94	45	16	0.34	1.29	0.49
80579	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.12	48	22	0.31	0.89	1.34

80580	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.99	45	28	0.34	0.82	1.31
80581	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.55	46	28	0.34	1.22	0.89
80582	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.14	42	22	0.35	0.7	1.46
80583	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.51	46	37	0.4	0.68	1.24
80584	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.85	43	31	0.38	0.7	1.25
80585	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.07	47	23	0.33	0.8	1.36
80586	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.26	45	22	0.32	0.81	1.5
80587	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.1	43	21	0.33	0.9	1.27
80588	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.98	47	34	0.36	0.97	1.14
80589	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.92	44	27	0.35	0.97	1.02
80590	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.63	44	25	0.33	1.14	0.64
80591	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.83	47	36	0.38	0.64	1.21

80592	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.32	43	14	0.36	0.8	1.22
80593	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.29	46	23	0.34	0.88	1.23
80594	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.41	44	27	0.35	0.9	1.06
80595	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.46	48	18	0.35	0.83	1.1
80596	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.58	47	27	0.34	0.98	1.06
80597	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.79	48	38	0.39	0.89	1.11
80598	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.73	47	39	0.42	0.77	1.03
80599	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.2	43	19	0.35	0.52	1.8
80600	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.89	45	31	0.35	0.83	1.13
80601	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.79	43	18	0.36	0.92	1.05
80602	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.13	46	22	0.35	0.66	1.43
80603	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.36	46	35	0.37	0.64	1.34
80604	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.34	44	18	0.34	1.23	0.56

80605	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	1.66	45	8	0.44	0.92	0.96
80606	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	1.7	45	8	0.45	0.3	1.43
80607	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.74	44	16	0.34	0.88	1.06
80608	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.97	46	33	0.37	0.7	1.32
80609	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.05	46	23	0.32	0.87	1.27
80610	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.12	45	12	0.37	0.99	0.96
80611	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.42	45	19	0.34	0.74	1.42
80612	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.09	48	23	0.33	0.98	0.95
80613	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.49	47	19	0.34	0.92	1.06
80614	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.96	45	12	0.36	1.15	1.13
80615	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.32	47	11	0.38	0.78	1.14
80616	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.6	45	17	0.35	0.96	1.06
80617	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.21	45	22	0.34	0.71	1.56
80618	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.11	48	25	0.34	0.72	1.37

80619	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.39	45	11	0.38	1.19	0.68
80620	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.31	46	20	0.33	0.8	1.34
80621	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.5	40	13	0.37	1.61	0.79
80622	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.91	42	12	0.38	0.87	1.01
80623	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-1.26	44	32	0.38	0.75	1
80624	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.62	46	19	0.33	1.04	0.77
80625	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-1.1	42	26	0.36	0.62	1.51
80626	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.51	42	23	0.36	0.61	1.64
80627	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.61	47	18	0.33	0.83	1.26
80628	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.18	46	13	0.37	1.24	0.93
80629	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.12	45	13	0.37	1.1	0.82
80630	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.32	44	15	0.36	0.82	1.2

80631	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.42	47	18	0.33	1.08	0.79
80632	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.72	44	15	0.36	2.34	0.23
80633	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.42	42	19	0.38	1.47	0.61
80634	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.61	41	16	0.37	0.83	1.15
80635	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.61	43	24	0.35	0.76	1.39
80636	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.91	44	28	0.35	1.58	0.76
80637	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-1.49	46	35	0.38	1.9	0.79
80638	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	2.37	47	7	0.46	1.62	0.94
80639	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.48	45	8	0.43	1.6	0.96
80640	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.04	46	13	0.36	1.04	0.87
80641	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.65	45	26	0.35	0.93	1.18
80642	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.81	47	16	0.36	0.92	0.96
80643	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.51	47	17	0.34	1.75	-0.12

80644	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.75	46	9	0.43	1.12	0.96
80645	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.62	45	9	0.42	0.61	1.26
80646	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.95	43	13	0.38	1.6	0.55
80647	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.48	45	15	0.35	0.99	1.01
80648	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.49	43	14	0.36	1.14	0.64
80649	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.91	47	15	0.37	1.02	0.94
80650	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.76	44	13	0.36	0.71	1.31
80651	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.83	45	34	0.41	0.62	1.32
80652	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.43	42	32	0.41	0.87	1.1
80653	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-2.25	44	36	0.45	1.1	0.93
80654	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.88	41	31	0.41	1.11	0.87
80655	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-2.31	46	40	0.48	0.61	1.05

80656	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.4	43	33	0.4	0.61	1.28
80657	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.18	42	29	0.39	0.43	1.61
80658	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.1	44	34	0.4	0.81	1.22
80659	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.74	47	36	0.39	0.84	1.03
80660	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.14	45	31	0.36	0.61	1.47
80661	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.41	38	29	0.44	0.77	1.14
80662	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.71	45	36	0.41	0.85	1.05
80663	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.22	43	32	0.38	0.51	1.51
80664	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.7	40	25	0.38	1.05	0.74
80665	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.29	35	26	0.42	0.85	1.05
80666	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.94	42	27	0.35	0.69	1.52
80667	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.92	42	29	0.38	0.53	1.53
80668	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.6	46	30	0.36	0.72	1.26

80669	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.79	39	27	0.39	0.57	1.48
80670	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.89	45	37	0.42	0.74	1.12
80671	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.96	39	24	0.39	0.52	1.54
80672	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.16	46	23	0.34	0.67	1.54
80673	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.46	46	18	0.35	0.77	1.33
80674	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.38	43	32	0.4	0.88	1.06
80675	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.23	47	26	0.32	0.87	1.2
80676	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.77	46	30	0.34	0.71	1.38
80677	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.5	46	19	0.35	1.48	0.44
80678	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.92	45	32	0.36	0.52	1.64
80679	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.24	46	29	0.34	0.9	1.05
80680	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.65	47	31	0.35	0.74	1.25
80681	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.34	47	20	0.33	0.76	1.43

80682	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.39	45	24	0.34	1.1	0.75
80683	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.36	43	25	0.35	0.78	1.3
80684	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.05	43	25	0.35	0.88	1.11
80685	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.13	46	25	0.34	0.78	1.21
80686	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.93	46	14	0.36	0.86	1.15
80687	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.39	44	25	0.34	0.75	1.37
80688	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.3	43	12	0.39	2.38	0.84
80689	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.84	46	16	0.35	1.19	0.73
80690	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.59	45	19	0.35	1.45	0.54
80691	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.48	45	17	0.33	1.03	0.88
80692	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.18	46	27	0.33	0.87	1.15
80693	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.29	47	20	0.33	0.87	1.11
80694	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.38	48	28	0.32	1	0.85
80695	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.07	43	20	0.34	0.96	1.02

80696	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.77	47	16	0.36	1.56	0.07
80697	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.46	46	20	0.33	2.04	-0.36
80698	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.19	48	21	0.33	1.41	0.48
80699	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.46	46	19	0.34	1.44	0.22
80700	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1	57	18	0.32	0.97	1.03
80701	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.94	48	30	0.33	0.88	1.14
80702	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.61	42	24	0.36	0.68	1.48
80703	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.55	45	36	0.39	1.17	1.07
80704	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.04	47	24	0.32	0.78	1.55
80705	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.4	48	24	0.31	0.89	1.26
80706	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.08	46	31	0.35	1.02	0.79
80707	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.48	47	26	0.33	0.84	1.31

80708	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	0.32	45	19	0.33	1.15	0.66
80709	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.04	44	30	0.36	0.74	1.31
80710	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.29	43	32	0.4	0.77	1.09
80711	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.96	47	39	0.43	0.71	1.11
80712	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-3.09	45	42	0.62	0.65	1.01
80713	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	2.35	43	6	0.49	3.84	0.26
80714	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.02	44	35	0.41	0.8	1.05
80715	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.71	45	38	0.44	0.7	1.06
80716	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.09	46	39	0.45	0.78	1.08
80717	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.24	47	40	0.44	0.66	1.19
80718	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.37	45	35	0.4	0.52	1.35
80719	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.49	47	28	0.33	1.13	0.75

80720	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.67	44	27	0.34	0.91	1.09
80721	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.08	46	32	0.36	0.67	1.37
80722	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.02	47	33	0.37	0.61	1.31
80723	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.58	42	16	0.37	0.88	1.1
80724	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.98	45	13	0.38	0.94	0.92
80725	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.19	44	25	0.35	0.72	1.31
80726	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.18	46	32	0.35	0.81	1.24
80727	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.51	46	18	0.34	1.36	0.43
80728	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.29	45	25	0.34	0.94	0.92
80729	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.3	46	26	0.34	0.84	1.2
80730	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.15	45	32	0.4	0.98	0.98
80731	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.68	44	26	0.33	1.05	1.13

80732	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.46	42	34	0.42	0.59	1.28
80733	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.94	49	42	0.44	0.99	1.04
80734	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.77	43	33	0.4	0.81	0.98
80735	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	0.69	47	16	0.33	1.13	0.67
80736	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.95	45	29	0.36	1.6	1.27
80737	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.3	47	35	0.37	0.93	0.84
80738	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.35	46	25	0.34	1.07	0.98
80739	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.57	46	25	0.33	0.96	0.94
80740	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.3	42	30	0.38	0.62	1.39
80741	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.13	43	31	0.38	1.35	0.93
80742	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.12	46	24	0.33	0.88	1.14
80743	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.44	46	25	0.33	1.14	0.65

80744	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.3	42	33	0.41	0.66	1.2
80745	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.28	44	21	0.35	1.36	0.72
80746	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.51	45	32	0.38	0.5	1.45
80747	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.93	45	38	0.46	0.46	1.3
80748	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-2.29	42	36	0.47	0.88	1.05
80749	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.03	46	26	0.34	0.74	1.35
80750	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.23	42	30	0.39	0.48	1.58
80751	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.34	43	24	0.34	0.94	1.24
80752	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.41	42	33	0.42	0.59	1.25
80753	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.86	44	15	0.36	1.33	0.83
80754	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	1	45	18	0.37	1.14	1.09
80755	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.58	46	20	0.34	0.78	1.3

80756	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.18	43	22	0.35	1.1	0.75
80757	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.15	44	22	0.33	0.87	1.15
80758	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.97	43	13	0.37	1.59	0.46
80759	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.8	43	16	0.36	0.87	1.23
80760	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.63	42	23	0.34	0.82	1.42
80761	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.65	46	17	0.34	1.06	0.73
80762	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.19	45	19	0.35	0.92	0.98
80763	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.7	45	30	0.36	0.63	1.49
80764	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.01	42	20	0.34	0.7	1.55
80765	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.47	44	8	0.43	4.05	0.62
80766	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-1.52	44	33	0.38	0.89	1.04
80767	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.17	44	12	0.37	0.75	1.3
80768	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.08	48	15	0.36	1.41	0.92

80769	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.91	46	15	0.34	1.11	0.82
80770	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.03	44	12	0.38	0.93	0.99
80771	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.25	46	15	0.38	1.58	0.84
80772	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.2	46	13	0.36	1.26	0.71
80773	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-1.19	44	31	0.37	0.88	1.05
80774	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.36	45	19	0.33	1.27	0.3
80775	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.9	44	15	0.35	1.07	1.14
80776	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.46	42	16	0.35	0.92	1.11
80777	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.89	44	14	0.37	0.95	1.06
80778	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.47	43	10	0.41	0.96	1.04
80779	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.96	45	14	0.35	0.87	1.23
80780	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.48	41	19	0.35	0.87	1.33

80781	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.1	42	14	0.37	0.88	1.16
80782	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.97	44	16	0.36	0.77	1.22
80783	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.49	46	11	0.39	0.83	1.15
80784	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.18	45	19	0.34	0.88	1.21
80785	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-1.31	47	35	0.37	0.6	1.42
80786	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.79	47	30	0.33	0.72	1.48
80787	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.93	44	6	0.46	0.76	1.1
80788	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.7	47	17	0.36	0.69	1.26
80789	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.73	45	9	0.43	1.33	0.84
80790	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.52	45	11	0.4	1.12	1.03
80791	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.07	45	13	0.36	0.98	1
80792	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.01	46	15	0.35	3.33	0.64
80793	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	-1.43	44	34	0.39	0.9	0.96

80794	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.27	42	21	0.35	1.08	0.67
80795	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.76	45	17	0.35	1.26	0.98
80796	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.83	47	15	0.36	1.16	0.53
80797	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	-0.17	46	22	0.34	1.26	0.55
80798	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	2.67	47	6	0.55	1.59	1.2
80799	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.29	44	13	0.36	0.82	1.23
80800	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.16	40	11	0.39	1.28	0.59
80801	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.36	43	19	0.34	1.18	0.63
80802	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.73	46	17	0.34	1.18	0.76
80803	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.82	47	11	0.39	2.55	0.36
80804	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.85	46	15	0.35	1.03	0.83
80805	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.37	45	13	0.38	1.27	0.71
80806	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.02	46	18	0.35	1.37	0.57

80807	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.65	44	10	0.41	1.6	0.63
80808	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.72	44	13	0.36	1.55	0.59
80809	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.03	46	10	0.4	1.04	0.95
80810	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.13	46	25	0.34	1.25	1.02
80811	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.75	46	29	0.35	1.33	0.64
80812	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.31	47	27	0.33	0.93	1.04
80813	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.24	44	23	0.34	1.29	0.86
80814	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.22	46	23	0.34	0.99	0.93
80815	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.48	45	21	0.34	1.04	0.91
80816	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.63	47	17	0.34	1.6	0.43
80817	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.29	46	24	0.34	1.25	0.91
80818	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.64	44	26	0.35	0.85	1.19
80819	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.67	46	24	0.33	0.77	1.34
80820	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.62	47	28	0.33	0.98	0.95
80821	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	1.99	45	8	0.42	1.13	0.9

80822	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.16	1900	874	0.05	0.9	1.17
80823	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.44	46	19	0.35	0.8	1.18
80824	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.07	46	23	0.33	0.71	1.47
80825	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.88	46	15	0.35	1.18	0.67
80826	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	1.16	47	12	0.38	1.6	0.67
80827	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.31	44	19	0.34	0.8	1.4
80828	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.73	47	31	0.34	0.71	1.41
80829	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.67	46	18	0.35	0.73	1.28
80830	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.69	44	15	0.36	1.27	0.63
80831	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.36	45	11	0.4	1.59	0.76
80832	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.92	46	14	0.36	0.95	0.91
80833	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.03	47	21	0.33	1.66	0.41
80834	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-1.14	47	35	0.36	0.76	1.25

80835	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.04	45	21	0.34	1.12	0.64
80836	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.55	45	20	0.34	0.97	1.08
80837	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.46	42	16	0.36	0.86	1.16
80838	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.13	45	13	0.37	0.7	1.29
80839	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.94	45	17	0.35	1.21	0.9
80840	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.25	44	23	0.34	0.71	1.58
80841	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.2	46	21	0.34	0.92	1.13
80842	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.82	44	16	0.36	1.26	0.73
80843	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.08	47	11	0.37	1.41	0.56
80844	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.62	45	15	0.34	1.72	0.65
80845	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.23	45	12	0.38	1.69	0.72
80846	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.07	44	13	0.38	0.98	0.89
80847	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.39	46	19	0.33	1.1	1.09
80848	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.49	43	17	0.34	0.96	0.99
80849	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.91	45	12	0.36	1.52	0.38

80850	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.69	45	17	0.34	1.62	0.28
80851	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.03	46	24	0.33	1.06	0.82
80852	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.29	43	22	0.34	0.8	1.37
80853	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.89	43	28	0.35	1	0.9
80854	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	0.16	43	19	0.34	1.87	-0.04
80855	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-1.8	48	38	0.38	1.08	0.94
80856	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.34	46	25	0.33	0.9	1.08
80857	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.45	46	26	0.33	0.91	1.42
80858	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.43	48	28	0.32	0.82	1.32
80859	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.57	43	24	0.35	0.78	1.25
80860	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range, to summarize and compare data sets.	-0.45	44	26	0.34	0.72	1.53
80861	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.1	44	35	0.42	0.59	1.27
80862	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.31	45	34	0.37	0.7	1.28

80863	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.87	46	26	0.33	0.72	1.46
80864	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.02	46	29	0.35	0.97	1.06
80865	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.37	46	32	0.35	0.77	1.27
80866	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.6	46	29	0.33	1.62	0.31
80867	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.21	46	33	0.36	0.67	1.36
80868	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.95	44	29	0.35	0.9	1.18
80869	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.83	44	27	0.35	1.25	0.47
80870	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.55	47	36	0.38	0.56	1.33
80871	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.65	46	16	0.36	1.07	0.77
80872	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.64	46	27	0.33	2.14	0.32
80873	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.78	47	33	0.36	1.11	1.05

80874	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.47	45	26	0.34	0.84	1.26
80875	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	1.37	43	12	0.39	1.26	0.82
80876	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.08	47	34	0.38	1.21	0.78
80877	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.02	47	23	0.34	1.2	0.87
80878	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.42	47	16	0.34	1.1	0.77
80879	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.58	46	25	0.33	0.89	1.24
80880	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.1	44	22	0.35	0.79	1.29
80881	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.53	48	29	0.32	0.88	1.2
80882	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.46	48	25	0.33	0.72	1.41
80883	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.66	44	26	0.34	0.81	1.23
80884	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	1.09	46	14	0.37	1.34	0.41

80885	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.76	45	27	0.34	0.99	1.14
80886	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.12	41	32	0.41	0.79	1.12
80887	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.82	45	28	0.34	0.84	1.14
80888	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.16	45	24	0.34	1.5	0.36
80889	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.63	47	26	0.33	1.3	0.92
80890	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.23	43	31	0.38	1.04	0.79
80891	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.9	47	39	0.43	0.79	1.21
80892	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.3	44	33	0.38	0.67	1.29
80893	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.71	45	36	0.41	0.94	1.04
80894	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.5	48	31	0.34	0.93	1.38
80895	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.23	42	30	0.38	0.87	1.13
80896	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.02	46	22	0.34	0.97	0.95

80897	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.51	44	26	0.35	0.96	1.06
80898	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.42	46	19	0.34	1.34	0.56
80899	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.03	43	22	0.36	1.28	1.1
80900	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.09	46	23	0.33	0.96	1.01
80901	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.02	46	24	0.33	1.09	0.85
80902	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.2	48	27	0.32	0.83	1.26
80903	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.67	47	37	0.39	0.92	1
80904	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.89	1905	617	0.06	1.07	0.95
80905	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	1.05	44	14	0.37	0.97	1.21
80906	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.56	47	18	0.34	1.05	0.94
80907	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.23	44	19	0.33	1.83	-0.34
80908	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.78	45	36	0.42	0.69	1.02
80909	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.01	45	31	0.36	1.09	0.71
80910	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.78	46	17	0.33	1.08	0.93

80911	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.42	45	18	0.34	0.99	1.08
80912	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.57	44	17	0.36	0.8	1.18
80913	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.65	46	16	0.35	0.83	1.09
80914	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.02	46	23	0.33	1.19	0.51
80915	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.53	45	16	0.37	0.69	1.29
80916	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.14	46	25	0.33	1.66	0.6
80917	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.14	47	24	0.33	0.81	1.39
80918	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.16	42	9	0.4	1.13	0.96
80919	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.22	47	13	0.37	1.53	0.7
80920	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.13	45	22	0.33	1.01	1.15
80921	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.93	45	14	0.37	1.91	0.85
80922	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.58	42	15	0.36	0.78	1.22
80923	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-1.14	46	33	0.36	0.96	0.82

80924	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.66	42	15	0.35	0.98	0.9
80925	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.25	44	10	0.42	1.22	0.86
80926	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.27	45	14	0.38	0.96	0.93
80927	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.42	42	20	0.35	0.76	1.38
80928	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.12	45	12	0.39	0.75	1.3
80929	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.63	43	15	0.36	1	0.91
80930	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.37	45	21	0.33	0.96	0.98
80931	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.28	45	22	0.33	0.84	1.23
80932	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.54	43	17	0.36	0.96	1.08
80933	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.69	41	16	0.35	1.17	0.65
80934	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.89	46	13	0.36	1.38	0.77
80935	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-1.35	44	32	0.38	1.54	0.86
80936	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.26	42	22	0.34	1.06	0.84

80937	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.34	46	19	0.33	0.83	1.31
80938	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.43	42	9	0.42	3.23	0.65
80939	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.29	42	11	0.4	0.65	1.25
80940	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.37	43	17	0.35	1.14	0.73
80941	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.6	42	25	0.36	1.06	0.86
80942	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.39	45	11	0.39	1.21	1
80943	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.9	47	7	0.45	0.81	1
80944	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.43	45	10	0.41	1.67	0.47
80945	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.53	44	11	0.42	0.97	1.09
80946	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.94	45	13	0.37	1.18	0.75
80947	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	-0.92	42	27	0.37	0.61	1.5
80948	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.64	42	15	0.37	1.07	0.88
80949	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.16	46	12	0.37	1.49	0.89

80950	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.66	43	16	0.36	1.13	0.84
80951	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.28	42	23	0.35	0.9	1.03
80952	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.59	46	36	0.39	1.08	0.88
80953	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.06	46	32	0.37	0.91	0.97
80954	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.32	45	27	0.35	1.01	0.87
80955	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.17	43	31	0.37	1.24	0.78
80956	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.96	45	37	0.45	0.81	1.03
80957	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-2.16	44	38	0.47	0.64	1.06
80958	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.91	45	37	0.42	0.72	1.11
80959	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.84	45	36	0.42	1.17	0.91
80960	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.8	46	37	0.41	0.71	1.13
80961	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.87	45	27	0.35	0.65	1.43
80962	Geometry and Measurement	Use similar triangles to find unknown lengths.	-2.17	48	40	0.45	0.4	1.32

80963	Geometry and Measurement	Use similar triangles to find unknown lengths.	-2.14	45	37	0.46	1.29	0.99
80964	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.42	45	34	0.4	0.78	1.18
80965	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.93	42	28	0.38	1.1	0.79
80966	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.06	45	32	0.36	0.68	1.32
80967	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.28	45	32	0.38	0.68	1.22
80968	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.8	46	32	0.34	0.96	1.12
80969	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.15	44	20	0.34	0.99	1.01
80970	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.55	47	30	0.33	1.06	0.86
80971	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.62	47	38	0.41	1.21	1.08
80972	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.68	52	35	0.32	0.94	0.96
80973	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.43	45	16	0.35	1.04	0.92
80974	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.17	45	17	0.34	0.96	0.97
80975	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.26	47	24	0.32	0.86	1.27
80976	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.91	45	29	0.35	0.93	0.93

80977	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.42	45	26	0.34	0.68	1.61
80978	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.03	40	19	0.35	0.82	1.38
80979	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.09	43	23	0.35	0.73	1.47
80980	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.74	47	16	0.35	1.18	0.67
80981	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.35	46	18	0.34	1.12	0.83
80982	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.55	45	19	0.35	1.31	0.58
80983	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.04	47	23	0.32	1.03	0.89
80984	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.87	45	8	0.43	0.73	1.15
80985	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.26	46	13	0.36	1.16	0.83
80986	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.86	46	16	0.35	0.98	0.94
80987	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.85	49	16	0.35	1.37	0.8
80988	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.73	44	27	0.35	1.05	0.93
80989	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.37	43	15	0.35	1.19	0.78

80990	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.13	45	19	0.33	1.1	0.7
80991	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.71	47	29	0.34	1.41	0.69
80992	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.7	45	14	0.37	1.18	1.02
80993	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-1.19	44	31	0.36	1.21	0.72
80994	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.65	44	25	0.33	1.23	0.41
80995	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.25	47	22	0.34	0.86	1.15
80996	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.47	45	26	0.34	0.69	1.47
80997	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.27	47	21	0.34	0.95	0.99
80998	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.9	45	16	0.35	1.46	0.46
80999	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-1.46	45	34	0.39	1.37	0.97
81000	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.98	46	8	0.45	0.73	1.06

Table 2
Distractor Analysis, Grade 8

ltem	Answer	Score	Count	Average Measure	S.E. MEAS	OUTFIT MNSQ
80001	Α	1	23	0.68	0.29	0.79
80001	В	0	10	-0.91	0.19	0.53
80001	С	0	12	-0.57	0.25	0.86
80001	D	0	1	-0.78	0	0.51
80002	Α	1	31	0.01	0.22	0.86
80002	В	0	8	-1.13	0.51	0.95
80002	С	0	4	-1.37	0.73	0.82
80002	D	0	2	-1.34	1.21	0.86
80003	Α	1	30	0.61	0.15	0.8
80003	В	0	7	-0.51	0.47	1.21
80003	С	0	8	-0.19	0.22	0.87
80003	D	0	1	-1.09	0	0.3
80004	Α	1	27	0.6	0.36	0.92
80004	В	0	12	-0.9	0.26	0.82
80004	С	0	3	-0.41	0.09	1.02
80004	D	0	5	-3.05	0.88	0.26
80005	Α	1	28	-0.01	0.17	1.04
80005	В	0	9	-0.62	0.29	1.05
80005	С	0	4	-0.44	0.25	0.98
80005	D	0	2	-0.78	1.31	1.27
80006	Α	1	1264	0.46	0.04	0.9
80006	В	0	222	-0.77	0.06	0.78
80006	С	0	237	-0.53	0.05	0.96
80006	D	0	171	-1.83	0.12	0.5
80007	Α	1	38	0.36	0.18	0.97
80007	В	0	2	-1.16	0.81	0.52
80007	С	0	3	-0.08	0.2	1.18
80007	D	0	3	-1.6	0.29	0.27
80008	Α	1	16	1.12	0.52	1.02
80008	В	0	14	-0.49	0.23	0.9
80008	С	0	13	-0.73	0.18	0.58
80008	D	0	2	-1.46	1.1	0.4
80009	Α	1	31	0.19	0.17	0.84

80009	В	0	10	-1.19	0.1	0.48
80009	С	0	5	-0.59	0.11	0.85
80009	D	0	1	-2.82	0	0.09
80010	Α	1	27	0.91	0.3	0.87
80010	В	0	6	-0.6	0.18	0.65
80010	С	0	4	-0.81	0.44	0.6
80010	D	0	9	-2.11	0.82	0.66
80011	Α	1	25	0.47	0.19	0.85
80011	В	0	7	-0.23	0.3	1.12
80011	С	0	6	-1.04	0.26	0.44
80011	D	0	10	-0.29	0.36	1.43
80012	Α	1	24	0.84	0.16	0.72
80012	В	0	6	0.17	0.27	1.12
80012	С	0	6	-0.05	0.28	0.95
80012	D	0	9	-1.18	0.34	0.35
80013	Α	1	16	0.52	0.21	1.03
80013	В	0	12	0.03	0.29	1.15
80013	С	0	6	0.31	0.15	1.18
80013	D	0	10	-1.19	0.61	0.59
80014	Α	1	10	0.69	0.34	0.77
80014	В	0	12	-0.31	0.27	1.01
80014	С	0	12	-0.5	0.52	1.16
80014	D	0	11	-0.51	0.32	0.83
80015	Α	1	19	0.61	0.26	1.43
80015	В	0	8	0.55	0.49	2.43
80015	С	0	10	-0.35	0.27	0.66
80015	D	0	11	0.22	0.36	1.41
80016	Α	1	15	1.27	0.6	1.59
80016	В	0	10	0.18	0.33	1.56
80016	С	0	6	-0.47	0.58	0.96
80016	D	0	10	-0.65	0.27	0.54
80017	Α	1	16	1.15	0.23	0.54
80017	В	0	9	-0.45	0.3	0.75
80017	С	0	9	-0.67	0.27	0.56
80017	D	0	14	-1.47	0.7	0.83
80018	Α	1	18	-0.09	0.25	1.42

80018	В	0	4	-0.23	0.44	1.32
80018	С	0	14	-0.18	0.26	1.5
80018	D	0	9	-1.05	0.61	0.95
80019	Α	1	13	0.43	0.42	1.3
80019	В	0	11	-0.17	0.24	1.3
80019	С	0	13	-0.54	0.16	0.79
80019	D	0	8	-1.35	0.38	0.46
80020	Α	1	22	0.99	0.28	0.69
80020	В	0	5	-0.86	0.13	0.39
80020	С	0	11	-0.34	0.27	0.85
80020	D	0	9	-0.86	0.42	0.66
80021	Α	1	13	0.58	0.55	1.31
80021	В	0	12	-0.47	0.33	0.89
80021	С	0	7	-0.21	0.46	1.31
80021	D	0	13	-0.59	0.27	0.74
80022	Α	1	15	1.4	0.45	0.73
80022	В	0	9	-0.36	0.27	0.66
80022	С	0	8	-0.13	0.51	2.02
80022	D	0	16	-0.52	0.27	0.67
80023	Α	1	15	0.44	0.3	1.21
80023	В	0	13	-0.11	0.22	1.16
80023	С	0	8	-0.62	0.22	0.62
80023	D	0	11	-0.63	0.55	1.03
80024	Α	1	9	1.29	0.46	0.88
80024	В	0	9	-0.2	0.28	0.86
80024	С	0	16	-0.72	0.36	0.72
80024	D	0	10	-0.96	0.63	0.91
80025	Α	1	15	0.71	0.27	0.62
80025	В	0	6	-0.66	0.38	0.86
80025	С	0	11	-0.58	0.35	1.11
80025	D	0	14	-1.44	0.45	0.57
80026	Α	1	10	0.98	0.4	0.82
80026	В	0	8	-0.15	0.21	0.83
80026	С	0	12	-0.13	0.2	0.91
80026	D	0	12	-1.24	0.62	0.69
80027	Α	1	16	0.38	0.29	0.93

80027	В	0	1	-0.19	0	1.03
80027	С	0	16	-0.62	0.15	0.79
80027	D	0	11	-1.27	0.58	1.04
80028	Α	1	8	0.93	0.77	1.35
80028	В	0	11	-0.48	0.3	1.12
80028	С	0	11	-0.71	0.16	0.63
80028	D	0	17	-1.33	0.44	0.69
80029	Α	1	14	0.35	0.28	0.93
80029	В	0	3	0.02	0.69	2.03
80029	С	0	14	-0.44	0.26	1.32
80029	D	0	13	-1.47	0.44	0.59
80030	Α	1	14	1.3	0.39	0.61
80030	В	0	10	-0.02	0.32	1.21
80030	С	0	7	-0.97	0.2	0.34
80030	D	0	10	-0.86	0.56	0.66
80031	Α	1	8	-0.05	0.25	1.51
80031	В	0	7	-0.03	0.36	1.09
80031	С	0	14	-0.13	0.22	1.04
80031	D	0	14	-0.39	0.52	1.99
80032	Α	1	19	0.69	0.41	1.57
80032	В	0	7	0.26	0.44	1.72
80032	С	0	4	-1.09	0.94	0.63
80032	D	0	14	-0.09	0.3	1.3
80033	Α	1	13	0.71	0.37	0.93
80033	В	0	6	-0.46	0.27	0.74
80033	С	0	10	0.41	0.59	4.52
80033	D	0	14	-1.25	0.41	0.58
80034	Α	1	14	0.23	0.22	1.06
80034	В	0	8	-0.31	0.39	1.13
80034	С	0	6	0.24	0.26	1.66
80034	D	0	17	-0.65	0.2	0.75
80035	Α	1	18	0.91	0.42	0.74
80035	В	0	11	-0.68	0.25	0.68
80035	С	0	3	-0.56	0.4	0.71
80035	D	0	12	-0.61	0.27	0.78
80036	Α	1	18	0.89	0.41	1.02

80036	В	0	11	-0.19	0.21	0.93
80036	С	0	8	-0.06	0.19	0.97
80036	D	0	6	-1.87	0.75	0.29
80037	Α	1	26	-0.06	0.13	1.03
80037	В	0	9	-0.04	0.4	1.91
80037	С	0	4	-0.53	0.32	0.85
80037	D	0	7	-0.7	0.47	1.04
80038	Α	1	17	0.7	0.51	1.64
80038	В	0	6	-0.73	0.21	0.58
80038	С	0	6	-0.05	0.36	1.24
80038	D	0	14	-0.54	0.18	0.76
80039	Α	1	14	0.16	0.2	1.07
80039	В	0	6	-0.4	0.31	0.86
80039	С	0	7	0.06	0.41	1.61
80039	D	0	14	-0.81	0.52	1.54
80040	Α	1	11	0.76	0.33	1.23
80040	В	0	15	0.01	0.18	0.91
80040	С	0	8	0.29	0.31	1.38
80040	D	0	13	-0.4	0.32	1.06
80041	Α	1	8	0.03	0.32	1.89
80041	В	0	12	0.34	0.26	1.54
80041	С	0	15	0.18	0.26	1.55
80041	D	0	11	-0.44	0.25	0.63
80042	Α	1	15	1.39	0.42	0.78
80042	В	0	8	-0.77	0.34	0.5
80042	С	0	9	0.1	0.25	1.01
80042	D	0	14	-1.21	0.57	1.02
80043	Α	1	18	0.37	0.38	1.24
80043	В	0	13	-0.02	0.2	1.49
80043	С	0	3	-0.78	0.34	0.59
80043	D	0	12	-0.93	0.26	0.67
80044	Α	1	16	0.54	0.19	0.83
80044	В	0	4	-0.95	0.31	0.4
80044	С	0	12	0.35	0.38	2.39
80044	D	0	11	-0.75	0.19	0.49
80045	Ā	1	18	1.02	0.52	1.27
•			-	-		

80045	В	0	13	-0.23	0.32	1.18
80045	С	0	7	-0.52	0.38	0.75
80045	D	0	9	0	0.46	2.33
80046	Α	1	20	0.11	0.18	0.92
80046	В	0	11	0.29	0.25	2.24
80046	С	0	4	-0.64	0.14	0.67
80046	D	0	12	-1.44	0.33	0.52
80047	Α	1	15	0.73	0.52	1.61
80047	В	0	20	-0.06	0.18	1.1
80047	С	0	6	-0.37	0.36	0.86
80047	D	0	7	-0.72	0.26	0.52
80048	Α	1	16	-0.05	0.52	4.21
80048	В	0	14	0.39	0.26	1.91
80048	С	0	4	0.25	0.17	1.11
80048	D	0	13	-0.45	0.36	0.9
80049	Α	1	7	0.73	0.95	2.16
80049	В	0	21	0.13	0.18	1.12
80049	С	0	8	-0.36	0.14	0.53
80049	D	0	8	-0.36	0.49	1.19
80050	Α	1	20	0.47	0.34	1.39
80050	В	0	9	0.23	0.32	1.77
80050	С	0	6	-0.23	0.34	1
80050	D	0	9	-0.76	0.16	0.5
80051	Α	1	14	0.67	0.27	0.8
80051	В	0	3	-0.68	0.98	0.97
80051	С	0	13	-0.45	0.3	1.22
80051	D	0	15	-0.54	0.29	0.94
80052	Α	1	21	0.12	0.22	1.09
80052	В	0	5	-0.75	0.32	0.65
80052	С	0	7	0	0.35	1.65
80052	D	0	9	-0.83	0.57	0.88
80053	Α	1	20	0.6	0.34	0.88
80053	В	0	6	-0.91	0.3	0.58
80053	С	0	7	-0.27	0.16	0.97
80053	D	0	11	-0.93	0.31	0.68
80054	Α	1	23	0.67	0.26	0.99

80054	В	0	4	0.60	0.68	0.79
80054	B C	0 0	4 4	-0.62 -0.07	0.78	1.79
80054	D	0	13	-0.07 -0.74	0.76	0.62
80055			18	0.84	0.25	0.82
	A	1			0.35	
80055	В	0	14	-0.52		0.82
80055	С	0	7	-0.41	0.43	1
80055	D	0	5	-0.28	0.35	0.85
80056	A	1	25	0.34	0.29	1.16
80056	В	0	16	-0.17	0.33	2.33
80056	C	0	1	-0.52	0	0.7
80056	D	0	3	-1.73	0.78	0.38
80057	Α	1	28	0.4	0.26	0.97
80057	В	0	9	-0.27	0.3	1.31
80057	С	0	6	-1.3	0.79	0.76
80057	D	0	3	-2.75	1.35	0.23
80058	Α	1	22	0.7	0.29	1.13
80058	В	0	8	0.87	0.67	5.72
80058	С	0	7	-0.72	0.19	0.55
80058	D	0	6	-2.66	0.43	0.11
80059	Α	1	22	0.47	0.33	1.12
80059	В	0	15	-0.18	0.24	1.36
80059	С	0	6	-0.67	0.16	0.61
80059	D	0	2	-3.78	1.67	0.08
80060	Α	1	21	0.28	0.21	1.26
80060	В	0	15	0.35	0.45	3.71
80060	С	0	7	-0.3	0.35	1.05
80060	D	0	2	-1.1	0.8	0.41
80061	Α	1	38	0.48	0.23	0.82
80061	В	0	2	-0.25	0.1	1.14
80061	C	0	0	0	0	0
80061	Ď	0	6	-2	0.87	0.72
80062	A	1	30	0.91	0.3	0.8
80062	В	0	4	-1.4	0.35	0.33
80062	C	Ő	6	-0.46	0.1	0.73
80062	D	0	4	-1.5	0.4	0.3
80063	A	1	30	0.91	0.4	0.54
00000	^	ı	50	0.91	0.21	0.54

80063	В	0	6	-0.39	0.35	1.01
80063	С	0	4	-1.18	0.31	0.38
80063	D	0	7	-2.27	0.52	0.18
80064	Α	1	33	0.98	0.3	0.78
80064	В	0	1	-0.26	0	1.03
80064	С	0	2	-0.03	0.96	1.96
80064	D	0	5	-2.84	0.75	0.18
80065	Α	1	29	0.25	0.18	0.74
80065	В	0	2	-0.84	0.24	0.68
80065	С	0	2	-1.25	0.71	0.56
80065	D	0	8	-1.73	0.64	0.61
80066	Α	1	28	0.65	0.28	1.16
80066	В	0	10	-0.42	0.19	0.87
80066	С	0	5	-1.09	0.49	0.59
80066	D	0	3	-1.64	0.3	0.24
80067	Α	1	34	0.22	0.17	0.79
80067	В	0	0	0	0	0
80067	С	0	4	-0.51	0.09	0.93
80067	D	0	4	-2.86	0.85	0.23
80068	Α	1	32	0.33	0.18	0.94
80068	В	0	4	-0.59	0.37	0.82
80068	С	0	4	-0.34	0.11	0.88
80068	D	0	3	-1.72	0.78	0.41
80069	Α	1	24	0.89	0.31	0.87
80069	В	0	5	-0.75	0.16	0.53
80069	С	0	9	-0.39	0.21	0.85
80069	D	0	8	-1.36	0.3	0.37
80070	Α	1	33	0.92	0.3	0.88
80070	В	0	1	-0.25	0	0.91
80070	С	0	4	-0.08	0.22	1.16
80070	D	0	5	-2.55	0.83	0.22
80071	Α	1	30	0.67	0.26	0.84
80071	В	0	5	0.24	0.62	3.44
80071	С	0	6	-0.84	0.28	0.56
80071	D	0	4	-1.29	0.22	0.32
80072	Α	1	26	1	0.25	0.72

80072	В	0	4	-0.02	0.61	1.61
80072	C	0	11	-0.02 -0.57	0.01	0.61
80072	D	0	6	-0.57 -1.61	0.18	0.54
80072	A	1	30	0.84	0.89	0.54
80073	В			-0.49	0.29	1.17
		0	5			
80073	С	0	6	-0.27	0.25	0.95
80073	D	0	6	-2.02	0.77	0.34
80074	A	1	29	0.56	0.29	0.97
80074	В	0	8	-0.37	0.31	1.09
80074	C	0	2	0.41	0.33	1.79
80074	D	0	5	-1.8	0.9	0.43
80075	Α	1	28	0.84	0.29	1.52
80075	В	0	4	-0.44	0.28	0.61
80075	С	0	8	-0.3	0.14	0.67
80075	D	0	7	-0.45	0.32	0.73
80076	Α	1	17	0.91	0.36	0.71
80076	В	0	8	-0.03	0.24	1.13
80076	С	0	6	-0.5	0.19	0.64
80076	D	0	10	-1.41	0.52	0.51
80077	Α	1	28	0.56	0.19	0.77
80077	В	0	4	-0.47	0.81	1.83
80077	С	0	6	-0.76	0.49	1
80077	D	0	6	-1.06	0.41	0.53
80078	Α	1	21	0.7	0.32	0.77
80078	В	0	6	-0.43	0.28	0.92
80078	С	0	11	-0.59	0.24	0.86
80078	D	0	8	-1.26	0.39	0.54
80079	Α	1	35	0.4	0.24	0.98
80079	В	0	2	-0.27	0.35	1.09
80079	С	0	4	-0.52	0.38	0.97
80079	D	0	5	-1.38	0.12	0.35
80080	Α	1	24	0.68	0.29	0.75
80080	В	0	7	-0.38	0.13	0.9
80080	Č	0	6	-1.08	0.55	0.68
80080	D	0	9	-2.41	0.76	0.52
80081	A	1	19	0.73	0.35	1.07
50001	/ \	1	10	0.70	0.00	1.07

80081	В	0	3	-1.17	0.21	0.29
80081	С	0	20	-0.03	0.18	1.16
80081	D	0	5	-1.79	0.96	0.39
80082	Α	1	22	0.09	0.17	0.9
80082	В	0	6	-1.02	0.15	0.51
80082	С	0	7	-0.36	0.26	1.13
80082	D	0	11	-0.91	0.47	0.9
80083	Α	1	12	-0.18	0.19	0.92
80083	В	0	17	-0.53	0.2	1.2
80083	С	0	3	-0.27	0.47	1.49
80083	D	0	13	-1.46	0.41	0.72
80084	Α	1	8	1.73	0.71	1.32
80084	В	0	12	0.3	0.27	0.78
80084	С	0	15	0.63	0.29	1.45
80084	D	0	11	-0.75	0.58	0.54
80085	Α	1	9	0.34	0.58	1.55
80085	В	0	9	0.05	0.41	1.8
80085	С	0	10	-0.3	0.41	1.21
80085	D	0	16	-0.61	0.39	0.88
80086	Α	1	19	0.84	0.3	0.88
80086	В	0	7	-0.53	0.3	0.73
80086	С	0	13	-0.32	0.15	0.8
80086	D	0	6	-1.61	0.79	0.4
80087	Α	1	19	0.78	0.26	1.03
80087	В	0	2	-0.23	0.12	0.61
80087	С	0	18	0.05	0.16	0.97
80087	D	0	5	-1.26	0.62	0.38
88008	Α	1	10	2.12	0.7	0.78
88008	В	0	18	-0.16	0.25	0.81
88008	С	0	8	0.21	0.48	1.59
88008	D	0	9	-1.51	0.4	0.26
80089	Α	1	16	0.53	0.41	1.76
80089	В	0	16	-0.1	0.24	1.28
80089	С	0	4	-0.05	0.24	0.96
80089	D	0	8	-0.92	0.29	0.47
80090	Α	1	11	0.63	0.44	1.56

В	0	6	0.19	0.42	1.5
С	0	7	0.11	0.28	1.1
D	0	18	-0.62	0.49	2.79
Α	1	9	-0.16	0.3	1.54
В	0	9	-0.26	0.38	1.26
С	0	11	-0.32	0.2	0.94
D	0	16	-0.3	0.21	1.11
Α	1	11	0.56	0.36	1.87
В	0	13	0.44	0.23	1.2
С	0	5	0.64	0.3	1.39
D	0	16	0.04	0.21	0.94
Α	1	13	0.85	0.37	1.17
В	0	9	0.05	0.45	2.17
С	0	11	-0.19	0.18	0.82
D	0	13	-1.12	0.28	0.41
Α	1	12	1.02	0.54	1.26
В	0	12	0.04	0.37	1.49
С	0	7	0.05	0.3	0.97
D	0	14	-0.87	0.37	0.63
Α	1	16	0.82	0.38	0.89
В	0	10	-0.63	0.39	0.87
С	0	8	0.08	0.39	1.61
D	0		-0.7	0.44	0.78
Α	1	16	0.77	0.58	1.83
В	0	4	-0.31	0.43	0.81
С	0	18	0.09	0.24	1.43
D	0	9	-0.66		0.59
Α	1	8	1.38	0.74	1.03
В	0	11	0.16	0.36	1.78
С	0	11	-0.1	0.4	1.32
D	0				0.38
Α	1	15			2.55
В	0	1	-1.46	0	0.15
С	0	16	0.35	0.31	1.78
D	0	15	-0.74	0.39	0.74
Α	1	6	1.5	0.43	0.61
	C D A B C D A	C D A B C D D A B C D	C	C 0 7 0.11 D 0 18 -0.62 A 1 9 -0.16 B 0 9 -0.26 C 0 11 -0.32 D 0 16 -0.3 A 1 11 0.56 B 0 13 0.44 C 0 5 0.64 D 0 16 0.04 A 1 13 0.85 B 0 9 0.05 C 0 11 -0.19 D 0 13 -1.12 A 1 12 1.02 B 0 12 0.04 C 0 7 0.05 D 0 14 -0.87 A 1 16 0.82 B 0 10 -0.63 C 0 8 0.08 D 0 13 -0.7 A	C 0 7 0.11 0.28 D 0 18 -0.62 0.49 A 1 9 -0.16 0.3 B 0 9 -0.26 0.38 C 0 11 -0.32 0.2 D 0 16 -0.3 0.21 A 1 11 0.56 0.36 B 0 13 0.44 0.23 C 0 5 0.64 0.3 D 0 16 0.04 0.21 A 1 13 0.85 0.37 B 0 9 0.05 0.45 C 0 11 -0.19 0.18 D 0 13 -1.12 0.28 A 1 12 1.02 0.54 B 0 12 0.04 0.37 C 0 7 0.05 0.3

80099	В	0	2	-0.73	0.49	0.3
80099	С	0	24	0.34	0.19	1.2
80099	D	0	16	-0.67	0.33	0.56
80100	Α	1	8	1.17	0.69	1.59
80100	В	0	14	0.76	0.43	2.39
80100	С	0	15	0.48	0.29	1.31
80100	D	0	9	-0.51	0.56	0.69
80151	Α	1	32	0.55	0.17	0.95
80151	В	0	6	-0.02	0.29	1.13
80151	С	0	6	-0.56	0.28	0.64
80151	D	0	3	-1.1	1.14	0.7
80152	Α	1	24	0.13	0.14	0.75
80152	В	0	4	-0.28	0.15	1.13
80152	С	0	6	-0.25	0.23	1.28
80152	D	0	11	-1.84	0.41	0.42
80153	Α	1	16	1.7	0.52	0.86
80153	В	0	14	-0.19	0.17	0.71
80153	С	0	5	-0.52	0.64	0.82
80153	D	0	11	-1.02	0.45	0.45
80154	Α	1	30	0.45	0.25	1.03
80154	В	0	2	-0.68	0.45	0.6
80154	С	0	7	-0.35	0.23	0.89
80154	D	0	6	-0.59	0.31	0.75
80155	Α	1	31	0.67	0.29	1.05
80155	В	0	7	0.63	0.18	2.12
80155	С	0	5	-0.64	0.35	0.67
80155	D	0	9	-1.3	0.32	0.38
80156	Α	1	18	0.73	0.37	1.21
80156	В	0	3	0.38	0.37	1.39
80156	С	0	15	-0.28	0.3	0.94
80156	D	0	11	-0.32	0.29	0.98
80157	Α	1	17	-0.01	0.18	1.15
80157	В	0	5	0.15	0.54	2.4
80157	С	0	13	-0.55	0.23	0.91
80157	D	0	11	-0.74	0.47	0.91
80158	Α	1	37	0.5	0.2	0.79

80158	В	0	2	-1.23	0.1	0.36
80158	С	0	2	0.07	0.32	1.37
80158	D	0	5	-1.9	0.82	0.41
80159	Α	1	33	0.13	0.28	1.34
80159	В	0	4	-0.39	0.3	1.12
80159	С	0	5	-0.5	0.4	1.25
80159	D	0	6	-1.84	0.81	0.63
80160	Α	1	26	0.27	0.24	1.15
80160	В	0	6	-0.41	0.27	0.96
80160	С	0	5	0.21	0.21	1.6
80160	D	0	11	-1.3	0.51	0.67
80161	Α	1	17	0.6	0.17	0.65
80161	В	0	12	-0.26	0.18	0.99
80161	С	0	7	-0.91	0.38	0.68
80161	D	0	9	-1.6	0.61	0.52
80162	Α	1	20	0.71	0.31	1.05
80162	В	0	10	-0.01	0.22	1.01
80162	С	0	13	-0.24	0.49	1.43
80162	D	0	3	-1.24	0.54	0.3
80163	Α	1	11	1.34	0.31	0.55
80163	В	0	8	-0.12	0.19	0.7
80163	С	0	13	-0.19	0.26	0.86
80163	D	0	11	-0.42	0.16	0.53
80164	Α	1	17	1.16	0.56	3.17
80164	В	0	10	0.19	0.32	1.08
80164	С	0	8	-0.19	0.48	1.11
80164	D	0	10	-0.57	0.33	0.51
80165	Α	1	15	0.69	0.27	0.91
80165	В	0	11	-0.39	0.29	0.83
80165	С	0	10	0.02	0.28	1.24
80165	D	0	9	-1.44	0.74	0.63
80166	Α	1	12	1.3	0.49	0.77
80166	В	0	4	-0.28	0.23	0.63
80166	С	0	12	-0.22	0.22	8.0
80166	D	0	18	-0.71	0.38	0.79
80167	Α	1	15	1.22	0.29	0.93

	_		_			
80167	В	0	6	-0.23	0.34	0.6
80167	С	0	8	0.43	0.19	1.04
80167	D	0	16	-0.18	0.26	0.97
80168	Α	1	9	0.74	0.42	1.24
80168	В	0	7	0.99	0.57	3.65
80168	С	0	18	-0.17	0.28	0.87
80168	D	0	12	-0.92	0.43	0.57
80169	Α	1	12	1.07	0.6	1.45
80169	В	0	9	-0.37	0.2	0.7
80169	С	0	6	-0.37	0.37	0.81
80169	D	0	18	-0.67	0.32	0.76
80170	Α	1	23	1.06	0.35	0.78
80170	В	0	4	-0.7	0.38	0.6
80170	С	0	6	0.22	0.33	1.54
80170	D	0	12	-1.53	0.43	0.39
80171	Α	1	14	0.97	0.48	1.18
80171	В	0	6	0.87	0.92	4.74
80171	С	0	14	-0.14	0.2	0.85
80171	D	0	11	-1.04	0.47	0.5
80172	Α	1	18	0.68	0.39	1.01
80172	В	0	10	-0.15	0.3	1.39
80172	С	0	6	-0.34	0.31	0.98
80172	D	0	11	-1.37	0.45	0.53
80173	Α	1	29	-0.01	0.21	1.37
80173	В	0	8	0.2	0.41	2.57
80173	С	0	1	0.6	0	2.41
80173	D	0	6	-1.31	0.42	0.51
80174	Α	1	15	0.96	0.41	1.32
80174	В	0	11	0.26	0.24	1.19
80174	С	0	14	-0.37	0.2	0.59
80174	D	0	7	-0.11	0.46	1.21
80175	Α	1	12	0.21	0.27	1.11
80175	В	0	5	-0.66	0.25	0.63
80175	C	0	10	0.06	0.26	1.41
80175	D	0	16	-1.44	0.58	0.9
80176	A	1	18	0.18	0.13	0.82
		-				3.32

80176	В	0	10	-0.32	0.17	0.98
80176	С	0	8	-0.35	0.46	1.9
80176	D	0	11	-1.06	0.47	0.77
80177	Α	1	10	0.87	0.39	1.52
80177	В	0	21	0.01	0.15	0.9
80177	С	0	6	0.04	0.48	1.14
80177	D	0	9	-0.25	0.23	0.68
80178	Α	1	18	0.99	0.37	1.02
80178	В	0	8	-0.19	0.28	0.86
80178	С	0	11	0.18	0.36	1.91
80178	D	0	10	-1.18	0.46	0.42
80179	Α	1	9	0.26	0.35	1.29
80179	В	0	23	-0.07	0.21	1.3
80179	С	0	0	0	0	0
80179	D	0	15	-0.81	0.39	0.75
80180	Α	1	12	1.08	0.26	0.74
80180	В	0	11	0.07	0.31	1.14
80180	С	0	12	0.09	0.24	0.98
80180	D	0	12	-1	0.52	0.65
80181	Α	1	38	-0.3	0.14	1.07
80181	В	0	3	-0.6	0.13	1.04
80181	С	0	4	-0.96	0.47	1.08
80181	D	0	3	-1.14	0.78	1.12
80182	Α	1	14	0.43	0.29	1.17
80182	В	0	13	0.08	0.23	1.27
80182	С	0	6	0.18	0.57	1.87
80182	D	0	13	-1.36	0.5	0.47
80183	Α	1	17	0.13	0.21	1.25
80183	В	0	14	0.02	0.22	1.25
80183	С	0	5	-0.04	0.32	1.08
80183	D	0	10	-0.12	0.15	0.91
80184	Α	1	14	0.47	0.19	0.66
80184	В	0	11	-0.13	0.22	1.28
80184	С	0	12	-0.96	0.13	0.48
80184	D	0	9	-0.62	0.27	0.83
80185	Α	1	30	0.34	0.15	0.81

80185	В	0	18	-0.4	0.16	1.11
80185	С	0	1	-0.44	0	0.77
80185	D	0	4	-3.07	0.8	0.14
80186	Α	1	7	0.84	0.37	0.65
80186	В	0	9	-0.34	0.22	0.86
80186	С	0	13	-0.45	0.19	0.78
80186	D	0	18	-0.62	0.25	0.85
80187	Α	1	18	0.76	0.37	1.38
80187	В	0	14	-0.05	0.28	1.08
80187	С	0	4	0.01	0.15	0.78
80187	D	0	11	-0.13	0.3	1.15
80188	Α	1	19	0.67	0.32	0.74
80188	В	0	5	-1.97	0.75	0.31
80188	С	0	10	-0.35	0.25	1.15
80188	D	0	10	-1.09	0.4	0.79
80189	Α	1	11	0.11	0.26	1.06
80189	В	0	7	-0.39	0.17	0.84
80189	С	0	8	-0.25	0.21	1.05
80189	D	0	19	-0.48	0.21	1
80190	Α	1	27	0.3	0.28	1.05
80190	В	0	2	-0.76	0.35	0.65
80190	С	0	13	-0.28	0.26	1.53
80190	D	0	4	-2.5	0.99	0.23
80191	Α	1	29	0.32	0.22	0.88
80191	В	0	7	-0.37	0.23	1
80191	С	0	7	-0.87	0.31	0.78
80191	D	0	3	-1.36	0.9	0.56
80192	Α	1	17	0.46	0.42	1.11
80192	В	0	17	-0.28	0.16	1.02
80192	С	0	6	-0.4	0.19	0.81
80192	D	0	6	-0.62	0.81	2.68
80193	Α	1	12	1.05	0.62	1.76
80193	В	0	5	-1.24	0.73	0.58
80193	С	0	14	0.33	0.52	3.37
80193	D	0	14	-0.46	0.18	0.54
80194	Α	1	11	1.28	0.39	0.83

80194	В	0	12	-0.03	0.32	1.14
80194	С	0	12	-0.72	0.46	0.62
80194	D	0	7	-0.44	0.41	0.61
80195	Α	1	13	0.3	0.3	1.1
80195	В	0	15	-0.65	0.37	1.35
80195	С	0	6	-0.15	0.37	1.18
80195	D	0	14	-0.31	0.26	1.03
80196	Α	1	18	0.91	0.32	1.21
80196	В	0	5	-0.18	0.23	0.67
80196	С	0	14	0.03	0.28	1.3
80196	D	0	8	-0.52	0.32	0.62
80197	Α	1	6	-0.03	0.34	1.57
80197	В	0	4	0.41	0.37	1.55
80197	С	0	20	0.31	0.14	1.34
80197	D	0	17	-0.81	0.29	0.66
80198	Α	1	18	0.53	0.16	0.82
80198	В	0	8	-0.07	0.36	1.33
80198	С	0	12	-0.31	0.34	1.19
80198	D	0	7	-0.89	0.53	0.94
80199	Α	1	17	0.74	0.42	1.95
80199	В	0	3	0.42	0.86	1.73
80199	С	0	12	0.56	0.41	2.23
80199	D	0	12	-0.29	0.33	0.71
80200	Α	1	15	0.91	0.44	1.16
80200	В	0	9	-0.48	0.29	0.71
80200	С	0	12	-0.29	0.26	0.95
80200	D	0	11	-0.6	0.35	0.8
80201	Α	1	41	0.46	0.21	0.88
80201	В	0	4	-0.92	0.25	0.5
80201	С	0	0	0	0	0
80201	D	0	3	-0.74	0.68	0.75
80202	Α	1	39	0.51	0.23	0.78
80202	В	0	3	-1.26	0.39	0.46
80202	С	0	1	-1.62	0	0.3
80202	D	0	3	-2.41	1.6	0.44
80203	Α	1	32	0.48	0.15	0.65

80203	В	0	6	-0.88	0.5	0.92
80203	С	0	1	-1.47	0	0.31
80203	D	0	8	-2.06	0.6	0.37
80204	Α	1	29	-0.05	0.18	1.15
80204	В	0	4	0.1	0.52	2.57
80204	С	0	11	-0.57	0.29	1.21
80204	D	0	2	-2.14	0.05	0.18
80205	Α	1	35	0.19	0.23	0.77
80205	В	0	3	-0.49	0.97	3
80205	С	0	4	-1.01	0.41	0.94
80205	D	0	4	-3.85	1.03	0.17
80206	Α	1	34	0.45	0.25	0.98
80206	В	0	1	-0.99	0	0.48
80206	С	0	8	-0.59	0.36	1.15
80206	D	0	2	-1.18	0.95	0.6
80207	Α	1	36	0.2	0.21	1.03
80207	В	0	5	-0.51	0.27	0.95
80207	С	0	3	-0.6	0.42	0.9
80207	D	0	3	-0.91	0.95	1.27
80208	Α	1	38	0.23	0.24	0.98
80208	В	0	2	0.17	0.52	2.52
80208	С	0	0	0	0	0
80208	D	0	5	-2.6	1.2	0.82
80209	Α	1	31	0.31	0.25	1.02
80209	В	0	3	0.19	0.43	2.03
80209	С	0	7	-0.67	0.28	0.87
80209	D	0	3	-3.76	1.63	0.3
80210	Α	1	26	0.2	0.25	1.3
80210	В	0	13	-0.52	0.18	0.94
80210	С	0	4	-1.72	1.28	0.67
80210	D	0	1	-1.43	0	0.32
80211	Α	1	30	0.46	0.24	0.74
80211	В	0	7	-1.15	0.32	0.61
80211	С	0	6	-1.3	0.45	0.59
80211	D	0	4	-1.94	1.08	0.65
80212	Α	1	30	0.58	0.15	0.7

80212	В	0	3	-0.4	0.64	1.09
80212	С	0	5	-1.08	0.15	0.37
80212	D	0	2	-2.83	2.31	0.33
80213	Α	1	38	0.48	0.25	1.07
80213	В	0	2	-0.55	0.17	0.71
80213	С	0	8	-0.63	0.21	0.74
80213	D	0	0	0	0	0
80214	Α	1	28	0.21	0.26	1.15
80214	В	0	12	-0.68	0.2	0.86
80214	С	0	3	-0.14	0.06	1.12
80214	D	0	1	-2.94	0	0.08
80215	Α	1	25	0.45	0.27	0.91
80215	В	0	6	-0.61	0.27	0.86
80215	С	0	9	-0.55	0.24	0.96
80215	D	0	6	-1.67	0.41	0.36
80216	Α	1	27	0.16	0.14	0.86
80216	В	0	10	-0.65	0.23	0.87
80216	С	0	5	-0.5	0.31	0.92
80216	D	0	2	-1.86	1.34	0.41
80217	Α	1	36	0.12	0.18	1.04
80217	В	0	3	-0.85	0.23	0.69
80217	С	0	3	-1.01	0.2	0.58
80217	D	0	3	-1.26	0.6	0.62
80218	Α	1	34	0.49	0.31	0.83
80218	В	0	3	-1.47	0.43	0.57
80218	С	0	0	0	0	0
80218	D	0	6	-3.3	1	0.52
80219	Α	1	35	0.19	0.27	1.25
80219	В	0	2	-0.43	0.23	0.98
80219	С	0	7	-0.95	0.2	0.64
80219	D	0	1	-0.31	0	1.08
80220	Α	1	44	0.07	0.18	0.97
80220	В	0	4	-0.76	0.37	0.87
80220	С	0	8	-0.76	0.34	1
80220	D	0	1	-0.95	0	0.59
80221	Α	1	34	0.63	0.26	0.96

80221	В	0	3	-0.48	0.29	0.73
80221	С	0	2	-0.9	0.59	0.52
80221	D	0	5	-0.67	0.31	0.67
80222	Α	1	28	0.6	0.25	0.81
80222	В	0	4	-2.13	1.11	0.36
80222	С	0	9	-0.58	0.27	0.86
80222	D	0	1	-1.1	0	0.39
80223	Α	1	32	0.36	0.22	0.71
80223	В	0	4	-0.73	0.26	0.89
80223	С	0	5	-1.61	0.49	0.54
80223	D	0	4	-2.09	0.4	0.26
80224	Α	1	33	0.4	0.24	0.88
80224	В	0	2	-1.82	0.33	0.25
80224	С	0	8	-0.67	0.36	1.43
80224	D	0	1	-2.7	0	0.1
80225	Α	1	26	0.34	0.22	1.02
80225	В	0	10	-0.21	0.15	1.05
80225	С	0	5	-0.9	0.15	0.49
80225	D	0	4	-0.94	0.66	0.96
80226	Α	1	26	0.15	0.17	0.77
80226	В	0	3	-1.07	0.19	0.54
80226	С	0	6	-0.65	0.24	0.94
80226	D	0	6	-1.46	0.26	0.42
80227	Α	1	17	-0.04	0.27	1.25
80227	В	0	2	0.62	0.15	2.65
80227	С	0	17	-0.51	0.23	1.26
80227	D	0	7	-2.04	0.64	0.36
80228	Α	1	25	0.2	0.34	0.98
80228	В	0	5	-1.43	0.61	0.68
80228	С	0	8	-0.78	0.38	1.02
80228	D	0	5	-1.72	0.54	0.46
80229	Α	1	30	0.16	0.16	0.86
80229	В	0	2	-0.06	8.0	1.66
80229	С	0	4	-1.18	0.59	0.6
80229	D	0	6	-0.81	0.12	0.61
80230	Α	1	33	0.29	0.21	1.02

80230	В	0	0	0	0	0
80230	С	0	9	-0.46	0.13	0.88
80230	D	0	2	-2.16	0.65	0.18
80231	Α	1	22	1.45	0.41	0.68
80231	В	0	4	-0.27	0.09	0.71
80231	С	0	5	-0.11	0.28	0.95
80231	D	0	12	-1.4	0.39	0.36
80232	Α	1	592	0.86	0.06	1.2
80232	В	0	286	-0.34	0.05	0.97
80232	С	0	596	-0.13	0.04	1.15
80232	D	0	414	-0.88	0.07	0.7
80233	Α	1	18	0.81	0.41	1.37
80233	В	0	10	-0.19	0.37	1.16
80233	С	0	8	-0.36	0.23	0.7
80233	D	0	9	-0.53	0.59	0.91
80234	Α	1	17	1.46	0.41	0.74
80234	В	0	10	0.05	0.21	0.85
80234	С	0	8	-0.41	0.29	0.59
80234	D	0	11	-0.48	0.45	0.73
80235	Α	1	9	0.44	0.39	1.01
80235	В	0	14	-0.48	0.26	0.97
80235	С	0	13	-0.51	0.42	1.11
80235	D	0	8	-1.13	0.41	0.59
80236	Α	1	6	1.15	0.24	0.49
80236	В	0	17	-0.08	0.21	0.92
80236	С	0	8	-0.43	0.29	0.7
80236	D	0	13	-0.34	0.35	0.93
80237	Α	1	22	0.51	0.34	1.09
80237	В	0	10	-0.75	0.35	0.89
80237	С	0	6	-0.71	0.21	0.64
80237	D	0	6	-0.47	0.38	0.98
80238	Α	1	11	0.26	0.35	1.68
80238	В	0	5	-0.35	0.2	0.66
80238	С	0	19	-0.14	0.23	1.26
80238	D	0	9	-0.9	0.76	1.41
80239	Α	1	12	1.04	0.49	1.09

80239	В	0	9	0.29	0.63	3.59
80239	С	0	6	-0.76	0.4	0.52
80239	D	0	18	-0.86	0.34	0.58
80240	Α	1	13	0	0.27	1.19
80240	В	0	7	-0.4	0.33	1.16
80240	С	0	12	-0.67	0.22	0.83
80240	D	0	15	-0.47	0.21	1.01
80241	Α	1	32	0.8	0.26	0.87
80241	В	0	4	-0.78	0.28	0.54
80241	С	0	7	-0.69	0.22	0.6
80241	D	0	3	-1.14	0.27	0.36
80242	Α	1	20	0.54	0.31	0.8
80242	В	0	7	-0.55	0.28	0.87
80242	С	0	10	-0.41	0.17	0.91
80242	D	0	6	-2.27	0.68	0.39
80243	Α	1	27	0.31	0.24	0.77
80243	В	0	7	-0.83	0.21	0.69
80243	С	0	4	-0.45	0.38	1.13
80243	D	0	8	-1.33	0.4	0.61
80244	Α	1	28	0.44	0.22	0.86
80244	В	0	6	-0.29	0.31	1.05
80244	С	0	6	-1.14	0.79	0.67
80244	D	0	6	-0.81	0.25	0.57
80245	Α	1	20	0.29	0.27	1.63
80245	В	0	8	-0.52	0.19	0.77
80245	С	0	7	-0.47	0.38	1.05
80245	D	0	10	-0.72	0.36	0.9
80246	Α	1	19	0.6	0.33	0.81
80246	В	0	7	-1.08	0.39	0.66
80246	С	0	10	-0.64	0.52	1.09
80246	D	0	9	-1.06	0.23	0.53
80247	Α	1	20	0.66	0.17	0.65
80247	В	0	6	-0.57	0.19	0.65
80247	С	0	13	-0.68	0.22	0.69
80247	D	0	7	-0.67	0.28	0.66
80248	Α	1	17	0.37	0.32	1.05

80248	В	0	4	-0.12	0.59	1.76
80248	С	0	13	-0.91	0.45	1.2
80248	D	0	8	-0.94	0.3	0.66
80249	Α	1	21	0.32	0.27	0.93
80249	В	0	6	-0.44	0.25	0.96
80249	С	0	12	-0.82	0.31	0.91
80249	D	0	8	-1.09	0.56	0.97
80250	Α	1	14	0.58	0.27	0.84
80250	В	0	6	-1.17	0.14	0.33
80250	С	0	8	0.32	0.55	3.69
80250	D	0	15	-0.74	0.27	0.71
80251	Α	1	28	0.24	0.19	0.91
80251	В	0	4	-0.43	0.48	1.29
80251	С	0	7	-0.88	0.19	0.63
80251	D	0	4	-1.42	0.87	1
80252	Α	1	742	0.57	0.05	1.23
80252	В	0	523	0.06	0.05	1.84
80252	С	0	372	-0.4	0.05	1.13
80252	D	0	242	-1.39	0.09	0.48
80253	Α	1	22	0.39	0.24	0.86
80253	В	0	8	-0.47	0.34	1.09
80253	С	0	7	-0.85	0.41	0.8
80253	D	0	8	-1.31	0.63	0.75
80254	Α	1	37	0.45	0.19	1.01
80254	В	0	3	-0.62	0.45	0.73
80254	С	0	4	-0.89	0.09	0.47
80254	D	0	1	-0.83	0	0.5
80255	Α	1	23	0.32	0.18	0.95
80255	В	0	11	-0.42	0.41	1.23
80255	С	0	4	-0.43	0.08	0.71
80255	D	0	5	-1.12	0.41	0.48
80256	Α	1	23	0.84	0.26	0.82
80256	В	0	10	-0.3	0.31	1.1
80256	С	0	7	-0.35	0.33	0.87
80256	D	0	3	-1.9	0.68	0.2
80257	Α	1	21	0.65	0.31	0.96

80257	В	0	11	-0.26	0.13	0.89
80257	С	0	7	-0.61	0.11	0.6
80257	D	0	5	-1.3	0.35	0.38
80258	Α	1	25	0.29	0.17	0.8
80258	В	0	5	-1.01	0.71	0.92
80258	С	0	8	-0.56	0.2	0.87
80258	D	0	5	-2.27	0.42	0.2
80259	Α	1	30	0.62	0.22	0.72
80259	В	0	6	-0.23	0.25	1
80259	С	0	8	-0.93	0.26	0.57
80259	D	0	3	-2	0.65	0.22
80260	Α	1	27	0.73	0.17	0.79
80260	В	0	3	-1.16	0.66	0.45
80260	С	0	8	-0.21	0.23	0.91
80260	D	0	5	-1.03	0.28	0.37
80261	Α	1	37	0.17	0.21	0.83
80261	В	0	2	-0.17	0.08	1.44
80261	С	0	0	0	0	0
80261	D	0	5	-1.97	0.23	0.27
80262	Α	1	38	0.45	0.17	0.81
80262	В	0	2	-0.46	0.08	0.78
80262	С	0	2	-0.3	0.15	0.93
80262	D	0	3	-3.07	1.34	0.22
80263	Α	-1	0	0	0	0
80263	В	-1	0	0	0	0
80263	С	-1	0	0	0	0
80263	D	-1	0	0	0	0
80264	Α	1	26	0.95	0.35	1.09
80264	В	0	5	-0.01	0.53	1.65
80264	С	0	11	0.05	0.21	1.13
80264	D	0	4	-2	0.74	0.3
80265	Α	1	27	0.6	0.23	0.79
80265	В	0	3	-0.11	0.62	1.42
80265	С	0	5	-0.99	0.39	0.51
80265	D	0	9	-0.93	0.68	1.25
80266	Α	1	33	0.4	0.17	0.58

80266	В	0	3	-1.26	0.6	0.69
80266	С	0	2	-1.21	0.34	0.53
80266	D	0	6	-3.13	0.8	0.22
80267	Α	1	27	0.82	0.3	0.93
80267	В	0	3	-0.71	0.35	0.5
80267	С	0	14	-0.17	0.33	1.47
80267	D	0	4	-1.25	0.41	0.34
80268	Α	1	33	0.24	0.25	1.21
80268	В	0	4	-0.08	0.89	3.5
80268	С	0	3	0.05	0.42	1.84
80268	D	0	3	-1.96	0.63	0.31
80269	Α	1	22	0.49	0.31	0.83
80269	В	0	7	-1.03	0.23	0.54
80269	С	0	8	-1.06	0.59	0.83
80269	D	0	7	-0.65	0.29	0.84
80270	Α	1	30	0.28	0.27	1.21
80270	В	0	7	-1.33	0.61	0.64
80270	С	0	5	-1.12	0.36	0.6
80270	D	0	1	0.65	0	2.78
80271	Α	1	24	0.75	0.3	0.94
80271	В	0	3	-1.01	0.82	0.7
80271	С	0	11	-0.37	0.16	0.82
80271	D	0	9	-1.11	0.47	0.65
80272	Α	1	32	0.25	0.29	1.08
80272	В	0	3	-0.87	0.42	0.86
80272	С	0	4	-1.24	0.33	0.61
80272	D	0	7	-1.45	0.17	0.45
80273	Α	1	25	0.71	0.28	0.93
80273	В	0	11	-0.5	0.18	0.75
80273	С	0	4	-0.61	0.27	0.62
80273	D	0	6	-0.98	0.29	0.49
80274	Α	1	17	0.25	0.25	1.13
80274	В	0	10	-0.54	0.27	0.96
80274	С	0	11	0.02	0.6	4.25
80274	D	0	10	-1.21	0.41	0.6
80275	Α	1	31	0.82	0.27	1.13

80275	В	0	5	-1.29	0.26	0.33
80275	С	0	5	-0.46	0.3	0.81
80275	D	0	5	-0.51	0.53	1.02
80276	Α	1	26	0.53	0.25	1.05
80276	В	0	8	-0.97	0.54	0.9
80276	С	0	9	-0.17	0.28	1.31
80276	D	0	3	-1.15	0.57	0.47
80277	Α	1	30	0.56	0.15	0.76
80277	В	0	5	-0.8	0.53	0.84
80277	С	0	5	-0.31	0.36	0.9
80277	D	0	5	-0.97	0.66	0.77
80278	Α	1	19	0.26	0.32	1.49
80278	В	0	7	-0.46	0.23	0.96
80278	С	0	13	-0.76	0.27	0.82
80278	D	0	6	-1.1	0.44	0.67
80279	Α	1	27	0.38	0.27	1.02
80279	В	0	6	-0.7	0.34	0.79
80279	С	0	7	-0.43	0.37	1.16
80279	D	0	4	-1.41	0.27	0.35
80280	Α	1	26	0.57	0.14	0.84
80280	В	0	6	0.33	0.55	2.4
80280	С	0	9	-0.03	0.26	1.13
80280	D	0	7	-1.72	0.77	0.62
80281	Α	1	30	0.38	0.24	0.98
80281	В	0	9	-0.24	0.29	1.32
80281	С	0	3	-0.64	0.9	1.46
80281	D	0	2	-2.12	0.49	0.17
80282	Α	1	22	0.61	0.3	0.91
80282	В	0	7	-0.13	0.21	1.14
80282	С	0	6	-0.86	0.29	0.58
80282	D	0	8	-1.11	0.34	0.56
80283	Α	1	30	0.25	0.18	1
80283	В	0	6	-0.61	0.43	1.01
80283	С	0	8	-0.57	0.42	1.32
80283	D	0	2	-0.24	0.05	0.94
80284	Α	1	33	0.01	0.17	1.07

80284	В	0	3	-0.27	0.18	1.17
80284	С	0	5	-0.72	0.45	1.15
80284	D	0	3	-1.81	0.74	0.42
80285	Α	1	29	0.24	0.15	0.8
80285	В	0	4	0.05	0.37	1.67
80285	С	0	6	-1.09	0.32	0.59
80285	D	0	6	-1.22	0.24	0.45
80286	Α	1	28	0.21	0.24	1.57
80286	В	0	8	-0.65	0.28	0.78
80286	С	0	6	-0.03	0.24	1.31
80286	D	0	5	-1.18	1.06	0.83
80287	Α	1	19	0.63	0.4	1.05
80287	В	0	6	-0.73	0.65	1.81
80287	С	0	9	-0.79	0.29	0.84
80287	D	0	8	-1.69	0.6	0.5
80288	Α	1	23	0.6	0.32	1.13
80288	В	0	7	-0.66	0.23	0.68
80288	С	0	9	-0.32	0.29	1.1
80288	D	0	5	-1.87	0.95	0.42
80289	Α	1	31	0.35	0.19	0.96
80289	В	0	5	-1	0.39	0.61
80289	С	0	8	-0.57	0.1	0.71
80289	D	0	1	-0.81	0	0.54
80290	Α	1	15	0.75	0.33	0.9
80290	В	0	14	-0.85	0.42	0.97
80290	С	0	8	-0.62	0.26	0.67
80290	D	0	9	-0.51	0.37	1.09
80291	Α	1	23	0.73	0.27	1.18
80291	В	0	7	0.12	0.29	1.13
80291	С	0	10	-0.11	0.31	1.07
80291	D	0	6	-0.83	0.52	0.59
80292	Α	1	35	0.24	0.17	0.76
80292	В	0	2	-1.43	0.01	0.37
80292	С	0	6	-0.8	0.28	0.83
80292	D	0	2	-3.9	1.71	0.1
80293	Α	1	30	1.1	0.27	0.73

80293	В	0	6	-0.24	0.38	1.03
80293	С	0	5	-0.92	1.08	1.15
80293	D	0	6	-2.21	0.78	0.28
80294	Α	1	32	0.6	0.25	0.89
80294	В	0	4	-0.39	0.38	0.9
80294	С	0	5	-0.52	0.29	0.74
80294	D	0	4	-1.85	1.27	0.49
80295	Α	1	38	0.02	0.18	1.13
80295	В	0	2	-0.68	0.67	1.01
80295	С	0	3	-0.96	0.13	0.63
80295	D	0	2	-1.4	0.07	0.4
80296	Α	1	42	0.29	0.2	0.85
80296	В	0	2	-1.54	0.03	0.33
80296	С	0	2	-0.81	0.36	0.74
80296	D	0	1	-5.13	0	0.08
80297	Α	1	25	0.37	0.19	0.89
80297	В	0	7	-0.08	0.34	1.55
80297	С	0	9	-0.66	0.19	0.69
80297	D	0	6	-1.17	0.67	1.02
80298	Α	1	34	0.54	0.15	0.75
80298	В	0	3	-1.78	0.71	0.28
80298	С	0	5	-0.91	0.24	0.53
80298	D	0	4	-1.53	1.36	0.87
80299	Α	1	27	0.57	0.21	0.9
80299	В	0	5	-0.53	0.44	0.95
80299	С	0	4	-0.5	0.35	0.81
80299	D	0	10	-0.92	0.27	0.63
80300	Α	1	35	-0.14	0.22	0.86
80300	В	0	3	-0.99	0.32	0.84
80300	С	0	5	-0.74	0.27	1.13
80300	D	0	2	-5.38	0.14	0.07
80301	Α	1	33	0.34	0.15	0.86
80301	В	0	2	0.14	0.23	1.56
80301	С	0	5	-0.8	0.55	0.94
80301	D	0	6	-2.37	0.39	0.24
80302	Α	1	22	0.16	0.27	1.09

80302	В	0	5	-1.26	0.39	0.62
80302	С	0	10	-0.82	0.32	1.25
80302	D	0	4	-2.46	0.18	0.17
80303	Α	1	22	0.49	0.33	1.08
80303	В	0	7	-0.6	0.5	1.18
80303	С	0	7	-0.82	0.48	0.95
80303	D	0	8	-1.31	0.35	0.49
80304	Α	1	22	0.66	0.29	0.95
80304	В	0	14	-0.37	0.15	1
80304	С	0	3	-1.42	0.37	0.34
80304	D	0	6	-2.28	0.39	0.2
80305	Α	1	27	0.06	0.21	0.79
80305	В	0	7	-0.65	0.17	1.08
80305	С	0	5	-0.82	0.26	0.94
80305	D	0	8	-2.95	0.53	0.21
80306	Α	1	32	0.49	0.26	1
80306	В	0	10	-0.78	0.21	0.7
80306	С	0	2	-0.67	0.33	0.68
80306	D	0	2	-1.03	0.53	0.51
80307	Α	1	27	0.21	0.23	0.85
80307	В	0	2	-1.55	0.31	0.37
80307	С	0	8	-0.95	0.22	0.78
80307	D	0	7	-1.46	0.31	0.5
80308	Α	1	12	0.77	0.64	1.63
80308	В	0	7	-0.24	0.52	1.42
80308	С	0	19	0.02	0.28	1.05
80308	D	0	6	-1.28	1.01	0.96
80309	Α	1	33	0.45	0.27	1.04
80309	В	0	2	-0.46	0.13	0.84
80309	С	0	6	-0.89	0.32	0.7
80309	D	0	2	-0.75	0.76	0.82
80310	Α	1	26	0.56	0.38	1.93
80310	В	0	7	-0.76	0.27	0.71
80310	С	0	8	-0.69	0.17	0.67
80310	D	0	3	-1.55	0.82	0.42
80311	Α	1	24	0.43	0.22	0.8

80311	В	0	3	-0.42	0.53	1.2
80311	С	0	12	-1.08	0.22	0.58
80311	D	0	6	-1.24	0.12	0.42
80312	Α	1	25	0.4	0.21	1.14
80312	В	0	1	-1.15	0	0.29
80312	С	0	6	-0.06	0.32	1.08
80312	D	0	13	-0.09	0.27	1.13
80313	Α	1	20	0.63	0.42	1.06
80313	В	0	9	-0.19	0.19	1.1
80313	С	0	6	-1	0.18	0.46
80313	D	0	11	-0.42	0.22	1.08
80314	Α	1	17	0.87	0.32	1.15
80314	В	0	11	0.14	0.17	0.97
80314	С	0	4	-0.06	0.31	0.81
80314	D	0	14	-0.44	0.21	0.63
80315	Α	1	16	0.81	0.32	0.95
80315	В	0	10	-0.18	0.12	0.77
80315	С	0	4	0.47	0.51	1.94
80315	D	0	13	-0.87	0.29	0.62
80316	Α	1	16	0.41	0.42	1.48
80316	В	0	9	-0.25	0.35	1.06
80316	С	0	7	0.25	0.52	2.71
80316	D	0	13	-0.46	0.43	0.95
80317	Α	1	15	0.41	0.33	1.14
80317	В	0	7	0.03	0.44	1.83
80317	С	0	9	-0.35	0.18	0.85
80317	D	0	14	-0.65	0.17	0.68
80318	Α	1	21	0.89	0.46	1
80318	В	0	8	0.04	0.25	1.69
80318	С	0	5	-1.26	0.25	0.42
80318	D	0	12	-1.7	0.35	0.38
80319	Α	1	21	0.78	0.33	0.81
80319	В	0	5	-0.18	0.27	1
80319	С	0	9	-0.7	0.13	0.56
80319	D	0	9	-0.66	0.33	0.77
80320	Α	1	22	0.86	0.33	0.99

80320	В	0	9	-0.67	0.16	0.52
80320	С	0	6	-0.18	0.64	1.52
80320	D	0	11	-0.8	0.51	0.85
80321	Α	1	20	0.83	0.25	0.91
80321	В	0	11	-0.31	0.28	0.86
80321	С	0	6	0.09	0.37	1.26
80321	D	0	9	-1.26	0.53	0.57
80322	Α	1	28	0.91	0.31	0.72
80322	В	0	2	-0.32	0.19	0.83
80322	С	0	6	-0.89	0.31	0.6
80322	D	0	8	-1.15	0.26	0.44
80323	Α	1	20	0.81	0.33	1.06
80323	В	0	16	-0.24	0.29	1.03
80323	С	0	5	-0.23	0.17	0.7
80323	D	0	5	-0.82	0.43	0.49
80324	Α	1	26	0.38	0.26	1.24
80324	В	0	4	-0.25	0.08	0.93
80324	С	0	7	-0.41	0.1	0.81
80324	D	0	8	-1.33	0.65	0.68
80325	Α	1	18	0.61	0.29	1.07
80325	В	0	12	-0.37	0.3	1.08
80325	С	0	9	-0.19	0.26	1.01
80325	D	0	9	-0.67	0.47	0.73
80326	Α	1	13	1.28	0.34	0.86
80326	В	0	9	-0.13	0.18	0.61
80326	С	0	11	0.26	0.38	1.19
80326	D	0	11	-0.58	0.28	0.47
80327	Α	1	9	0.51	0.35	0.94
80327	В	0	16	-0.13	0.17	1.06
80327	С	0	6	-0.73	0.63	0.85
80327	D	0	12	-1.25	0.52	0.68
80328	Α	1	28	0.65	0.33	0.95
80328	В	0	3	-0.82	0.4	0.66
80328	С	0	7	0.06	0.35	1.75
80328	D	0	7	-1.91	0.6	0.39
80329	Α	1	12	0.23	0.58	2.01

80329	В	0	6	-0.02	0.54	2.06
80329	С	0	9	-0.43	0.19	0.84
80329	D	0	12	-0.77	0.56	0.91
80330	Α	1	11	0.21	0.49	1.23
80330	В	0	12	-0.53	0.19	0.79
80330	С	0	10	-0.42	0.5	1.48
80330	D	0	9	-1.15	0.43	0.58
80331	Α	1	21	0.63	0.24	0.78
80331	В	0	8	-0.92	0.46	0.67
80331	С	0	6	-0.01	0.35	1.45
80331	D	0	8	-1.6	0.54	0.4
80332	Α	1	12	0.68	0.39	1.15
80332	В	0	8	0.09	0.28	1.18
80332	С	0	9	-0.55	0.33	0.81
80332	D	0	14	-0.39	0.3	0.86
80333	Α	1	12	1.01	0.55	1.38
80333	В	0	9	-0.23	0.34	0.81
80333	С	0	14	0.23	0.26	1.4
80333	D	0	10	-0.43	0.3	0.65
80334	Α	1	29	0.34	0.25	0.86
80334	В	0	7	-1.37	0.49	0.73
80334	С	0	3	-1.06	0.29	0.65
80334	D	0	7	-2.37	0.53	0.3
80335	Α	1	23	0.18	0.17	0.74
80335	В	0	9	-0.97	0.43	0.97
80335	С	0	7	-0.96	0.2	0.63
80335	D	0	6	-1.94	0.72	0.49
80336	Α	1	17	0.13	0.25	1.44
80336	В	0	8	-0.14	0.21	1.06
80336	С	0	11	0.34	0.72	6.44
80336	D	0	6	-1.53	0.28	0.27
80337	Α	1	22	0.54	0.34	1.1
80337	В	0	12	-0.87	0.24	0.75
80337	С	0	9	-0.31	0.22	1.14
80337	D	0	3	-1.91	0.93	0.36
80338	Α	1	21	0.66	0.19	0.7

80338	В	0	6	0.11	0.3	1.39
80338	С	0	8	-0.52	0.22	0.69
80338	D	0	7	-2.12	0.82	0.34
80339	Α	1	19	0.35	0.45	1.46
80339	В	0	9	0.24	0.4	2.37
80339	С	0	8	-0.15	0.6	3.16
80339	D	0	5	-0.93	0.64	0.72
80340	Α	1	23	0.55	0.22	0.82
80340	В	0	11	-0.66	0.27	8.0
80340	С	0	8	-0.02	0.34	1.41
80340	D	0	4	-2.79	1.1	0.3
80341	Α	1	16	0.85	0.41	1.03
80341	В	0	6	-0.35	0.3	0.86
80341	С	0	15	0.12	0.2	1.41
80341	D	0	10	-1.86	0.49	0.29
80342	Α	1	19	0.67	0.23	0.83
80342	В	0	3	-0.52	0.08	0.6
80342	С	0	9	-0.06	0.3	1.62
80342	D	0	12	-1.26	0.38	0.51
80343	Α	1	16	0.71	0.37	1.09
80343	В	0	16	-0.17	0.26	0.95
80343	С	0	7	0.8	0.38	2.38
80343	D	0	6	-1.7	0.88	0.39
80344	Α	1	15	0.76	0.28	0.84
80344	В	0	9	-0.52	0.34	0.87
80344	С	0	16	-0.01	0.2	1.23
80344	D	0	6	-1.73	0.57	0.31
80345	Α	1	11	1.26	0.51	0.88
80345	В	0	12	-0.61	0.38	0.71
80345	С	0	9	-0.35	0.36	0.99
80345	D	0	10	-0.66	0.47	0.81
80346	Α	1	21	0.57	0.24	0.9
80346	В	0	8	-0.85	0.25	0.55
80346	С	0	6	-0.38	0.17	0.77
80346	D	0	10	-0.51	0.34	0.92
80347	Α	1	5	1.28	0.74	1.06

80347	В	0	5	-1.36	0.93	0.31
80347	С	0	12	-0.05	0.29	0.82
80347	D	0	20	0.05	0.28	1.04
80348	Α	1	10	1.19	0.6	1.18
80348	В	0	16	0.15	0.21	1.09
80348	С	0	5	0.15	0.3	0.9
80348	D	0	16	-0.96	0.46	0.89
80349	Α	1	9	-0.06	0.56	2.15
80349	В	0	17	0.34	0.23	1.57
80349	С	0	12	-0.12	0.3	1.12
80349	D	0	7	-0.67	0.45	0.56
80350	Α	1	15	1.03	0.32	0.92
80350	В	0	14	0.2	0.18	1.02
80350	С	0	8	-0.09	0.18	0.69
80350	D	0	10	-0.52	0.27	0.54
80351	Α	1	20	0.95	0.43	0.9
80351	В	0	4	-0.73	0.14	0.51
80351	С	0	6	-0.22	0.28	1.01
80351	D	0	13	-0.99	0.45	0.73
80352	Α	1	26	0.83	0.33	1.25
80352	В	0	5	0.28	0.29	1.45
80352	С	0	6	-0.2	0.34	0.99
80352	D	0	10	-1.15	0.59	0.62
80353	Α	1	9	-0.16	0.42	1.96
80353	В	0	7	-0.12	0.26	1.14
80353	С	0	9	-0.18	0.39	1.6
80353	D	0	19	-0.88	0.41	0.85
80354	Α	1	11	1.13	0.63	1.34
80354	В	0	7	-0.05	0.41	1.05
80354	С	0	6	0.11	0.3	0.94
80354	D	0	23	-0.16	0.17	0.78
80355	Α	1	20	0.11	0.22	1.15
80355	В	0	9	-0.16	0.15	1.03
80355	С	0	6	-0.37	0.34	0.96
80355	D	0	10	-0.47	0.29	0.97
80356	Α	1	11	0.83	0.61	2.2

80356	В	0	11	-0.17	0.25	1.03
80356	С	0	9	-0.42	0.25	0.7
80356	D	0	13	-0.59	0.38	0.8
80357	Α	1	13	1.26	0.48	1.45
80357	В	0	10	0.06	0.39	1.55
80357	С	0	12	0.08	0.37	1.55
80357	D	0	12	-0.84	0.54	1.21
80358	Α	1	35	0.08	0.31	1.56
80358	В	0	6	-0.5	0.2	1.03
80358	С	0	3	-0.42	0.34	1.15
80358	D	0	4	-2.12	0.55	0.29
80359	Α	1	27	0.76	0.32	1
80359	В	0	13	-0.31	0.16	0.84
80359	С	0	4	-0.4	0.15	0.68
80359	D	0	2	-1.37	0.58	0.3
80360	Α	1	24	0.52	0.18	0.8
80360	В	0	8	-0.34	0.14	0.77
80360	С	0	7	-0.25	0.47	1.26
80360	D	0	7	-1.36	0.71	0.61
80361	Α	1	24	0.64	0.22	0.72
80361	В	0	7	-0.85	0.22	0.51
80361	С	0	4	0.32	0.63	2.8
80361	D	0	9	-0.97	0.39	0.69
80362	Α	1	7	0.34	0.44	1.76
80362	В	0	17	-0.33	0.19	0.62
80362	С	0	16	0.33	0.27	1.55
80362	D	0	5	0.15	0.82	2.32
80363	Α	1	23	0.71	0.31	0.88
80363	В	0	6	-0.11	0.24	1.11
80363	С	0	3	-0.61	0.16	0.6
80363	D	0	13	-0.99	0.29	0.55
80364	Α	1	24	0.86	0.3	0.69
80364	В	0	6	-0.8	0.24	0.59
80364	С	0	4	0.09	0.63	2.25
80364	D	0	12	-2.04	0.58	0.41
80365	Α	1	24	0.55	0.25	1.12

80365	В	0	3	0.43	0.32	1.61
80365	С	0	11	-0.17	0.27	1.1
80365	D	0	6	-1.01	0.31	0.44
80366	Α	1	7	0.24	0.5	1.33
80366	В	0	17	0.33	0.19	1.75
80366	С	0	10	-0.48	0.25	0.71
80366	D	0	11	-1.09	0.47	0.48
80367	Α	1	16	0.54	0.37	1.25
80367	В	0	17	0.6	0.24	2.05
80367	С	0	6	-0.39	0.24	0.55
80367	D	0	5	-2.03	1.35	0.61
80368	Α	1	24	0.55	0.33	0.92
80368	В	0	6	-0.24	0.27	1.1
80368	С	0	7	-0.58	0.32	0.94
80368	D	0	7	-0.56	0.44	1.21
80369	Α	1	27	0.71	0.21	0.79
80369	В	0	3	-1.24	0.25	0.34
80369	С	0	10	-0.42	0.2	0.85
80369	D	0	5	-0.95	0.54	0.58
80370	Α	1	25	0.5	0.24	1.11
80370	В	0	7	0.09	0.24	1.39
80370	С	0	3	-0.72	0.17	0.54
80370	D	0	9	-1.34	0.56	0.61
80371	Α	1	13	0.08	0.19	0.96
80371	В	0	15	-0.08	0.21	1.61
80371	С	0	8	-0.69	0.25	0.75
80371	D	0	10	-1.54	0.69	0.78
80372	Α	1	8	0.11	0.35	1.6
80372	В	0	5	-0.3	0.42	0.86
80372	С	0	17	-0.06	0.31	2.03
80372	D	0	15	-0.69	0.35	0.95
80373	Α	1	9	0.38	0.69	2.02
80373	В	0	8	0.15	0.2	0.97
80373	С	0	15	-0.22	0.39	1.42
80373	D	0	14	-0.05	0.26	1.06
80374	Α	1	17	0.64	0.27	1.04

80374	В	0	17	0.15	0.39	2.32
80374	С	0	5	-0.52	0.35	0.62
80374	D	0	7	-1.37	0.75	0.49
80375	Α	1	5	-0.21	0.35	1.39
80375	В	0	6	-0.69	0.34	0.69
80375	С	0	28	-0.14	0.15	1.38
80375	D	0	8	-1.21	0.63	0.58
80376	Α	1	23	0.06	0.14	1.09
80376	В	0	7	-0.36	0.31	0.99
80376	С	0	5	-0.33	0.25	0.9
80376	D	0	11	-0.42	0.56	2.06
80377	Α	1	24	0.79	0.29	0.95
80377	В	0	9	-0.51	0.2	0.66
80377	С	0	5	0.14	0.31	1.27
80377	D	0	7	-1.62	0.93	0.84
80378	Α	1	18	1.02	0.35	0.75
80378	В	0	14	-0.52	0.23	0.83
80378	С	0	10	-0.35	0.25	0.9
80378	D	0	5	-2.89	0.84	0.18
80379	Α	1	27	0.72	0.21	0.83
80379	В	0	2	-0.38	0.03	0.73
80379	С	0	7	-0.69	0.22	0.63
80379	D	0	10	-1.29	0.49	0.61
80380	Α	1	27	0.73	0.22	0.65
80380	В	0	4	-1.07	0.31	0.48
80380	С	0	5	-0.27	0.22	1.02
80380	D	0	9	-2.18	0.6	0.33
80381	Α	1	8	1.33	0.42	0.67
80381	В	0	15	-0.36	0.19	0.57
80381	С	0	14	0.43	0.27	1.52
80381	D	0	9	-1.59	0.65	0.34
80382	Α	1	15	0.51	0.36	1.27
80382	В	0	15	-0.5	0.37	1.17
80382	С	0	7	-0.13	0.37	1.23
80382	D	0	8	-1.4	0.57	0.48
80383	Α	1	12	0.67	0.48	1.16

80383	В	0	7	0.68	0.37	2.16
80383	С	0	10	0.09	0.25	1.16
80383	D	0	19	-0.69	0.32	0.84
80384	Α	1	13	0.66	0.44	1.29
80384	В	0	8	0.53	0.34	2.13
80384	С	0	7	-0.42	0.19	0.63
80384	D	0	17	-0.62	0.3	0.66
80385	Α	1	17	0.71	0.25	0.75
80385	В	0	4	-0.28	0.25	0.77
80385	С	0	9	0.06	0.58	1.98
80385	D	0	17	-0.53	0.23	0.84
80386	Α	1	16	1.85	0.46	0.7
80386	В	0	7	0.29	0.27	1.07
80386	С	0	13	-0.08	0.23	0.79
80386	D	0	11	-1.26	0.38	0.26
80387	Α	1	16	0.61	0.25	1.06
80387	В	0	8	0.24	0.15	1.12
80387	С	0	8	-0.21	0.22	0.81
80387	D	0	16	-0.55	0.38	1.03
80388	Α	1	10	1.54	0.7	0.89
80388	В	0	21	-0.43	0.15	0.61
80388	С	0	5	0.18	0.57	1.45
80388	D	0	9	-0.07	0.25	0.89
80389	Α	1	14	0.68	0.62	2.35
80389	В	0	11	-0.22	0.26	0.96
80389	С	0	2	0.67	0.43	1.86
80389	D	0	18	-0.48	0.3	0.96
80390	Α	1	21	0.51	0.4	1.98
80390	В	0	17	0.05	0.24	1.57
80390	С	0	2	-0.56	0.76	0.65
80390	D	0	6	-0.8	0.44	0.6
80391	Α	1	18	0.37	0.18	0.85
80391	В	0	11	-0.28	0.34	1.26
80391	С	0	5	-0.4	0.3	0.87
80391	D	0	6	-1.03	0.26	0.45
80392	Α	1	17	0.87	0.37	1.03

80392	В	0	7	-0.68	0.33	0.6
80392	С	0	13	0.12	0.19	1.09
80392	D	0	10	-0.55	0.56	0.97
80393	Α	1	18	0.34	0.24	1.05
80393	В	0	11	0.29	0.19	1.64
80393	С	0	7	-0.28	0.23	0.88
80393	D	0	9	-1.49	0.4	0.39
80394	Α	1	22	0.05	0.3	2.14
80394	В	0	1	-0.41	0	0.61
80394	С	0	18	0.17	0.21	1.57
80394	D	0	6	-0.53	0.27	0.63
80395	Α	1	19	0.58	0.25	0.93
80395	В	0	7	0.33	0.24	1.63
80395	С	0	12	-0.41	0.25	0.87
80395	D	0	8	-1.76	0.41	0.31
80396	Α	1	25	0.44	0.27	1.38
80396	В	0	0	0	0	0
80396	С	0	14	0.26	0.33	2.3
80396	D	0	6	-1.03	0.87	0.9
80397	Α	1	11	0.78	0.63	2.02
80397	В	0	13	-0.38	0.28	1.02
80397	С	0	9	-0.48	0.29	0.93
80397	D	0	9	-0.6	0.27	0.7
80398	Α	1	8	0.33	0.31	0.79
80398	В	0	11	-0.64	0.23	0.84
80398	С	0	9	-0.21	0.19	1.1
80398	D	0	16	-0.86	0.3	0.87
80399	Α	1	17	0.3	0.35	2.01
80399	В	0	11	0.01	0.22	1.23
80399	С	0	11	-0.39	0.29	1.13
80399	D	0	7	-1.26	0.77	0.66
80400	Α	1	18	0.86	0.31	0.88
80400	В	0	9	-0.75	0.27	0.62
80400	С	0	7	-0.5	0.33	0.77
80400	D	0	13	-0.74	0.37	1.06
80401	Α	1	31	0	0.24	1.43

80401	В	0	4	-0.94	0.32	0.73
80401	С	0	6	-0.79	0.22	0.84
80401	D	0	4	-2.05	0.77	0.56
80402	Α	1	27	0.63	0.22	0.64
80402	В	0	4	-0.8	0.36	0.76
80402	С	0	6	-0.93	0.24	0.65
80402	D	0	9	-2.31	0.51	0.49
80403	Α	1	39	0.54	0.28	1.06
80403	В	0	3	-1.49	0.3	0.39
80403	С	0	3	-0.46	0.82	1.58
80403	D	0	1	-3.44	0	0.06
80404	Α	1	24	0.72	0.19	0.79
80404	В	0	6	-0.09	0.31	1.04
80404	С	0	6	-0.18	0.25	0.87
80404	D	0	9	-1.92	0.76	1.07
80405	Α	1	29	0.63	0.26	0.74
80405	В	0	6	-0.57	0.29	0.9
80405	С	0	5	-1.03	0.71	1.19
80405	D	0	5	-2.65	0.88	0.29
80406	Α	1	33	0.62	0.29	0.76
80406	В	0	2	-0.81	0.34	0.7
80406	С	0	2	-0.21	0.19	1.23
80406	D	0	7	-2.01	0.47	0.39
80407	Α	1	32	0.39	0.24	0.86
80407	В	0	7	-0.36	0.26	1.25
80407	С	0	1	-1	0	0.53
80407	D	0	4	-2.79	0.26	0.11
80408	Α	1	31	0.24	0.16	0.98
80408	В	0	9	-0.36	0.32	1.19
80408	С	0	2	-0.28	0.45	1.03
80408	D	0	5	-1.65	0.23	0.26
80409	Α	1	25	0.21	0.33	1.68
80409	В	0	9	0.54	0.28	3.02
80409	С	0	6	-1.24	0.6	0.71
80409	D	0	6	-1.53	0.48	0.43
80410	Α	1	18	0.26	0.19	0.85

80410	В	0	9	-1	0.4	0.72
80410	С	0	18	-0.44	0.14	0.93
80410	D	0	2	-0.84	0.09	0.53
80411	Α	1	26	0.81	0.22	0.75
80411	В	0	4	-0.68	0.2	0.53
80411	С	0	5	-0.36	0.25	0.79
80411	D	0	9	-1.64	0.73	0.88
80412	Α	1	24	0.7	0.25	0.88
80412	В	0	11	-0.31	0.2	0.93
80412	С	0	6	0.19	0.41	1.86
80412	D	0	6	-2.11	0.43	0.18
80413	Α	1	31	0.47	0.15	0.57
80413	В	0	5	-1.62	0.99	0.74
80413	С	0	5	-1.35	0.61	0.68
80413	D	0	5	-2.77	0.68	0.21
80414	Α	1	35	0.33	0.21	0.89
80414	В	0	2	-0.25	0.14	1.11
80414	С	0	4	-1.07	0.41	0.6
80414	D	0	5	-1.48	0.67	0.65
80415	Α	1	22	0.98	0.3	0.84
80415	В	0	7	-0.78	0.4	0.62
80415	С	0	10	-0.13	0.23	0.96
80415	D	0	6	-0.77	0.31	0.52
80416	Α	1	20	0.51	0.2	0.67
80416	В	0	16	-0.81	0.31	1.1
80416	С	0	4	-0.68	0.09	0.62
80416	D	0	5	-1.08	0.3	0.48
80417	Α	1	27	1	0.31	1.01
80417	В	0	10	0.17	0.27	1.23
80417	С	0	5	-0.44	0.42	0.67
80417	D	0	4	-0.82	0.33	0.39
80418	Α	1	20	0.63	0.26	1.08
80418	В	0	5	-0.69	0.14	0.49
80418	С	0	10	0.04	0.36	1.95
80418	D	0	8	-0.99	0.42	0.7
80419	Α	1	21	0.52	0.33	0.92

80419	В	0	7	-0.45	0.17	0.81
80419	С	0	8	-0.18	0.22	1.1
80419	D	0	9	-1.22	0.37	0.52
80420	Α	1	22	0.58	0.32	0.88
80420	В	0	5	-0.83	0.57	0.94
80420	С	0	7	-0.89	0.44	0.77
80420	D	0	11	-0.83	0.31	0.79
80421	Α	1	19	0.42	0.27	0.77
80421	В	0	7	-0.44	0.18	0.98
80421	С	0	12	-0.68	0.18	0.82
80421	D	0	8	-2.08	0.69	0.4
80422	Α	1	22	0.29	0.22	1.2
80422	В	0	12	0.11	0.24	1.75
80422	С	0	7	-0.27	0.39	1.42
80422	D	0	6	-1.6	0.38	0.29
80423	Α	1	22	0.23	0.25	1.09
80423	В	0	8	-0.65	0.48	1.28
80423	С	0	11	-0.77	0.25	0.77
80423	D	0	5	-1.08	0.28	0.52
80424	Α	1	29	0.13	0.22	0.97
80424	В	0	9	-0.81	0.43	1.23
80424	С	0	4	-0.8	0.16	0.71
80424	D	0	8	-1.04	0.32	0.75
80425	Α	1	16	0.68	0.41	1.42
80425	В	0	19	-0.55	0.19	0.88
80425	С	0	5	0.1	0.51	2.01
80425	D	0	3	-3.55	1.01	0.08
80426	Α	1	32	0.59	0.21	0.85
80426	В	0	3	-0.08	0.7	1.48
80426	С	0	4	-1.87	1.06	0.38
80426	D	0	4	-0.51	0.6	1
80427	Α	1	28	0.24	0.15	0.9
80427	В	0	12	-0.28	0.28	1.1
80427	С	0	4	-0.73	0.15	0.57
80427	D	0	4	-1.58	0.68	0.43
80428	Α	1	16	0.86	0.38	0.81

80428	В	0	9	-0.39	0.23	0.86
80428	С	0	11	-0.28	0.17	0.91
80428	D	0	7	-1.71	0.49	0.4
80429	Α	1	19	0.77	0.42	0.89
80429	В	0	6	-0.93	0.25	0.51
80429	С	0	10	-0.53	0.27	0.99
80429	D	0	4	-0.17	0.55	1.39
80430	Α	1	21	0.24	0.27	1.16
80430	В	0	13	-0.9	0.15	0.7
80430	С	0	6	-0.48	0.17	0.97
80430	D	0	5	-1.78	0.41	0.33
80431	Α	1	21	0.23	0.25	1.73
80431	В	0	7	0.29	0.45	1.77
80431	С	0	15	0.32	0.19	1.45
80431	D	0	2	-0.99	0.38	0.32
80432	Α	1	31	0.16	0.21	1.24
80432	В	0	3	-0.55	0.05	0.82
80432	С	0	6	-0.55	0.42	1.27
80432	D	0	7	-1.56	0.69	0.75
80433	Α	1	24	0.93	0.32	0.72
80433	В	0	12	-0.51	0.33	1.12
80433	С	0	7	-0.53	0.31	0.75
80433	D	0	4	-3.41	1.23	0.19
80434	Α	1	13	-0.69	0.39	3.26
80434	В	0	9	0.22	0.75	7.02
80434	С	0	14	-0.19	0.19	1.21
80434	D	0	12	-0.46	0.22	1
80435	Α	1	24	0.43	0.23	0.96
80435	В	0	7	-0.1	0.26	1.33
80435	С	0	7	-0.99	0.16	0.47
80435	D	0	4	-1.54	0.85	0.7
80436	Α	1	21	0.3	0.34	1.04
80436	В	0	19	-0.52	0.25	1.2
80436	С	0	1	-1.26	0	0.38
80436	D	0	4	-1.88	0.74	0.4
80437	Α	1	26	0.64	0.32	1.03

	_	_				
80437	В	0	4	-0.83	0.21	0.53
80437	C	0	7	-0.32	0.16	0.9
80437	D	0	9	-1.15	0.49	0.6
80438	Α	1	25	0.63	0.29	1.39
80438	В	0	5	-0.17	0.35	0.88
80438	С	0	9	-0.27	0.33	0.98
80438	D	0	5	-0.19	0.23	0.78
80439	Α	1	28	0.23	0.23	1.06
80439	В	0	11	-0.08	0.32	1.68
80439	С	0	3	-0.65	0.39	0.63
80439	D	0	2	-0.2	0.76	1.11
80440	Α	1	26	0.71	0.21	0.72
80440	В	0	12	-0.51	0.22	0.8
80440	С	0	2	-0.87	0.48	0.49
80440	D	0	4	-2.2	1.06	0.27
80441	Α	1	30	0.34	0.21	0.92
80441	В	0	8	-0.71	0.21	0.76
80441	С	0	6	-0.77	0.34	0.82
80441	D	0	2	-1.5	0.69	0.37
80442	Α	1	25	0.26	0.24	0.92
80442	В	0	7	-0.39	0.16	0.9
80442	С	0	8	-1.14	0.59	0.84
80442	D	0	6	-1.3	0.51	0.62
80443	Α	1	23	0.62	0.31	0.81
80443	В	0	15	-0.64	0.2	0.81
80443	С	0	4	-0.86	0.18	0.53
80443	D	0	2	-1.37	1.38	0.64
80444	Α	1	31	0	0.13	0.88
80444	В	0	3	-0.4	0.16	0.98
80444	С	0	7	-0.61	0.26	0.97
80444	D	0	4	-1.61	0.45	0.36
80445	Ā	1	18	0.31	0.42	1.71
80445	В	0	9	0.2	0.39	2.84
80445	C	Ö	13	-0.71	0.2	0.67
80445	D	Ö	6	-0.57	0.43	1.13
80446	A	1	23	0.86	0.29	0.89
505		•		0.00	0.20	0.00

80446	В	0	9	-0.6	0.11	0.5
80446	С	0	8	-0.29	0.17	0.71
80446	D	0	6	-0.05	0.32	1.04
80447	Α	1	21	0.66	0.24	0.81
80447	В	0	12	-0.79	0.16	0.55
80447	С	0	10	-0.3	0.2	0.92
80447	D	0	3	-1.04	0.26	0.4
80448	Α	1	25	0.48	0.27	0.85
80448	В	0	10	-0.25	0.25	1.24
80448	С	0	3	-0.61	0.41	0.75
80448	D	0	8	-1.13	0.51	1.03
80449	Α	1	22	1.29	0.41	0.73
80449	В	0	8	-0.54	0.47	1.18
80449	С	0	4	-0.49	0.55	1.03
80449	D	0	9	-1.52	0.55	0.5
80450	Α	1	18	0.32	0.26	1.04
80450	В	0	13	-0.29	0.2	1.06
80450	С	0	1	0.44	0	1.68
80450	D	0	13	-0.59	0.25	0.83
80451	Α	1	29	0.58	0.28	0.93
80451	В	0	4	-0.57	0.12	0.72
80451	С	0	8	-0.83	0.11	0.57
80451	D	0	5	-1.31	0.48	0.48
80452	Α	1	30	0.04	0.25	1.11
80452	В	0	6	-0.25	0.24	1.44
80452	С	0	7	-1.58	0.35	0.44
80452	D	0	3	-2.21	1.62	0.7
80453	Α	1	20	0.83	0.27	0.93
80453	В	0	6	-0.41	0.57	1.58
80453	С	0	14	-0.01	0.13	0.95
80453	D	0	6	-2.37	0.96	0.33
80454	Α	1	11	0.89	0.51	1.45
80454	В	0	6	-0.24	0.32	0.85
80454	С	0	15	-0.06	0.18	1
80454	D	0	12	-1.51	0.59	0.51
80455	Α	1	19	0.33	0.47	1.85

80455	В	0	14	-0.07	0.14	1.03
80455	С	0	8	-0.08	0.24	1.08
80455	D	0	7	-0.18	0.49	1.61
80456	Α	1	21	1.05	0.23	0.69
80456	В	0	9	-0.2	0.2	0.78
80456	С	0	7	-0.6	0.36	0.6
80456	D	0	8	-1.5	0.82	0.62
80457	Α	1	27	0.06	0.26	1.58
80457	В	0	6	-1.08	0.56	0.63
80457	С	0	11	0.04	0.33	2.03
80457	D	0	3	-2.54	1.67	0.78
80458	Α	1	23	0.32	0.22	0.96
80458	В	0	1	0.26	0	1.56
80458	С	0	3	-0.28	0.06	0.91
80458	D	0	17	-0.84	0.26	0.78
80459	Α	1	22	0.47	0.31	0.9
80459	В	0	8	-0.84	0.24	0.63
80459	С	0	12	-0.24	0.2	1.21
80459	D	0	5	-1.43	0.1	0.3
80460	Α	1	19	0.91	0.44	0.85
80460	В	0	5	-0.64	0.21	0.65
80460	С	0	7	0.14	0.57	3.36
80460	D	0	11	-2.32	0.7	0.49
80461	Α	1	12	0.81	0.54	0.89
80461	В	0	7	-0.35	0.3	0.95
80461	С	0	21	-0.32	0.11	0.87
80461	D	0	7	-1.4	0.65	0.6
80462	Α	1	17	0.95	0.36	0.85
80462	В	0	3	0.18	0.36	1.01
80462	С	0	4	-0.13	0.57	1.03
80462	D	0	21	-0.19	0.18	0.84
80463	Α	1	14	0.81	0.48	1.33
80463	В	0	5	0.08	0.29	0.93
80463	С	0	18	0.25	0.18	1.33
80463	D	0	10	-1.01	0.46	0.57
80464	Α	1	14	1.04	0.42	0.77

80464	В	0	14	0.02	0.22	1.16
80464	С	0	7	-0.4	0.31	0.72
80464	D	0	10	-1.33	0.36	0.38
80465	Α	1	29	0.46	0.2	0.97
80465	В	0	3	-0.66	0.07	0.52
80465	С	0	11	0.08	0.28	1.59
80465	D	0	2	-1.98	80.0	0.14
80466	Α	1	22	1.29	0.41	0.72
80466	В	0	7	-0.78	0.47	0.76
80466	С	0	3	-0.36	1.16	2.41
80466	D	0	11	-1.01	0.33	0.61
80467	Α	1	18	1.02	0.42	1.4
80467	В	0	12	0.23	0.3	1.85
80467	С	0	6	-0.64	0.17	0.47
80467	D	0	5	-2.15	0.61	0.21
80468	Α	1	8	1.66	0.91	1.47
80468	В	0	5	-0.32	0.4	0.56
80468	С	0	8	0.53	0.39	1.65
80468	D	0	11	-1.03	0.46	0.66
80469	Α	1	12	1.23	0.42	0.93
80469	В	0	9	-0.13	0.27	0.82
80469	С	0	7	-0.19	0.22	0.66
80469	D	0	16	-0.19	0.15	0.7
80470	Α	1	12	1.04	0.37	0.79
80470	В	0	6	-0.16	0.27	0.82
80470	С	0	7	0.16	0.55	2.52
80470	D	0	17	-0.72	0.24	0.56
80471	Α	1	14	0.73	0.46	1.2
80471	В	0	7	-0.09	0.28	1.02
80471	С	0	7	0.21	0.26	1.26
80471	D	0	18	-0.65	0.35	0.77
80472	Α	1	16	1.61	0.55	0.95
80472	В	0	5	0.14	0.43	1.25
80472	С	0	12	-0.08	0.15	0.78
80472	D	0	12	-1.31	0.48	0.42
80473	Α	1	16	1.34	0.28	0.78

80473	В	0	6	-0.14	0.33	0.59
80473	С	0	12	0.61	0.28	1.32
80473	D	0	11	-0.48	0.25	0.4
80474	Α	1	22	0.86	0.33	1.03
80474	В	0	5	-0.19	0.48	1.15
80474	С	0	6	-0.65	0.27	0.58
80474	D	0	10	-0.73	0.38	0.73
80475	Α	1	18	0.98	0.28	0.75
80475	В	0	6	-0.36	0.35	0.74
80475	С	0	5	-0.07	0.39	1.09
80475	D	0	11	-1.61	0.68	0.54
80476	Α	1	31	0.26	0.17	0.94
80476	В	0	2	0.24	0.09	1.55
80476	С	0	6	-0.55	0.33	0.91
80476	D	0	9	-1.04	0.29	0.55
80477	Α	1	21	1.21	0.34	0.81
80477	В	0	7	-0.6	0.26	0.55
80477	С	0	8	-0.27	0.21	0.71
80477	D	0	9	-0.55	0.35	0.67
80478	Α	1	12	0.83	0.34	0.74
80478	В	0	14	-0.37	0.25	0.97
80478	С	0	6	-0.16	0.29	0.98
80478	D	0	13	-0.62	0.2	0.63
80479	Α	1	16	1.2	0.41	0.76
80479	В	0	15	-0.24	0.3	1.12
80479	С	0	4	-0.59	0.11	0.44
80479	D	0	10	-0.87	0.57	0.72
80480	Α	1	7	0.76	0.56	1.16
80480	В	0	20	-0.1	0.14	0.84
80480	С	0	5	-0.32	0.16	0.59
80480	D	0	15	-0.06	0.21	1.03
80481	Α	1	16	0.92	0.24	0.97
80481	В	0	7	-0.05	0.24	0.8
80481	С	0	13	-0.08	0.25	1.01
80481	D	0	11	-0.68	0.53	0.69
80482	Α	1	18	0.53	0.43	1.7

80482	В	0	5	0.09	0.48	1.49
80482	С	0	9	-0.19	0.14	0.86
80482	D	0	8	-0.74	0.45	0.82
80483	Α	1	14	0.19	0.23	1.13
80483	В	0	13	0.29	0.26	1.8
80483	С	0	5	-0.53	0.4	0.77
80483	D	0	10	-0.79	0.24	0.56
80484	Α	1	15	1.34	0.47	1.19
80484	В	0	8	0.42	0.24	1.04
80484	С	0	10	0.38	0.36	1.39
80484	D	0	12	-0.52	0.39	0.64
80485	Α	1	19	1.43	0.37	0.81
80485	В	0	6	-0.19	0.14	0.58
80485	С	0	14	-0.07	0.2	0.86
80485	D	0	9	-0.64	0.32	0.48
80486	Α	1	16	0.9	0.3	1.07
80486	В	0	10	-0.22	0.3	0.79
80486	С	0	8	0.34	0.36	1.41
80486	D	0	14	-0.18	0.3	1.08
80487	Α	1	11	1.04	0.33	0.93
80487	В	0	12	0.01	0.29	0.9
80487	С	0	5	0.92	0.49	2.1
80487	D	0	16	-0.21	0.21	0.69
80488	Α	1	8	0.39	0.42	1.38
80488	В	0	10	-0.14	0.33	1.21
80488	С	0	15	0.06	0.23	1.23
80488	D	0	11	-0.87	0.5	0.62
80489	Α	1	11	0.55	0.58	1.43
80489	В	0	15	-0.29	0.22	0.99
80489	С	0	5	-0.99	0.46	0.48
80489	D	0	14	-0.16	0.28	1.38
80490	Α	1	7	-0.21	0.36	3.18
80490	В	0	22	0.34	0.18	1.3
80490	С	0	12	0.4	0.3	1.51
80490	D	0	5	-1.07	0.5	0.31
80491	Α	1	18	0.75	0.32	0.95

80491	В	0	8	-0.7	0.21	0.57
80491	С	0	8	-0.45	0.34	1.17
80491	D	0	11	-0.73	0.5	0.98
80492	Α	1	18	1.29	0.34	0.7
80492	В	0	10	-0.29	0.21	0.78
80492	С	0	3	-0.11	0.54	1.02
80492	D	0	12	-2.06	0.65	0.51
80493	Α	1	10	1.1	0.58	0.99
80493	В	0	6	0	0.35	1.01
80493	С	0	18	0.19	0.25	1.58
80493	D	0	12	-1.35	0.37	0.3
80494	Α	1	12	1.46	0.67	1.27
80494	В	0	8	-0.07	0.34	1
80494	С	0	13	-0.41	0.21	0.69
80494	D	0	11	-0.68	0.36	0.68
80495	Α	1	17	0.32	0.29	0.85
80495	В	0	5	0.06	0.46	2.04
80495	С	0	5	-0.62	0.33	0.87
80495	D	0	15	-1.04	0.3	1.11
80496	Α	1	11	1.12	0.59	1.36
80496	В	0	5	-0.08	0.25	0.67
80496	С	0	17	0.1	0.25	1.22
80496	D	0	13	-0.46	0.48	0.94
80497	Α	1	12	0.87	0.52	1.28
80497	В	0	13	-0.29	0.24	0.88
80497	С	0	6	-0.55	0.24	0.56
80497	D	0	14	-0.04	0.18	0.97
80498	Α	1	8	0.75	0.8	1.91
80498	В	0	11	0.17	0.3	1.33
80498	С	0	9	0.45	0.48	2.88
80498	D	0	16	-1.09	0.47	0.71
80499	Α	1	14	1.11	0.6	1.77
80499	В	0	8	-0.64	0.28	0.39
80499	С	0	13	0.61	0.28	1.64
80499	D	0	11	0.17	0.35	1.26
80500	Α	1	8	1.92	0.72	0.97

80500	В	0	9	0.28	0.48	1.35
80500	С	0	13	-0.49	0.26	0.43
80500	D	0	16	-0.41	0.45	0.93
80506	Α	1	16	0.72	0.44	1.06
80506	В	0	6	-0.03	0.38	1.27
80506	С	0	6	-0.18	0.29	1.02
80506	D	0	18	-0.8	0.27	0.73
80518	Α	1	17	0.42	0.46	1.54
80518	В	0	4	-0.24	0.21	0.95
80518	С	0	9	-0.16	0.21	1.13
80518	D	0	14	-0.81	0.28	0.77
80551	Α	1	27	0.14	0.21	0.87
80551	В	0	7	-0.89	0.57	1.3
80551	С	0	5	-0.73	0.14	0.77
80551	D	0	5	-2.1	0.51	0.3
80552	Α	1	33	0.45	0.28	0.92
80552	В	0	3	-1.02	0.36	0.56
80552	С	0	6	-0.43	0.35	1.25
80552	D	0	2	-3.14	0.17	0.07
80553	Α	1	31	0.29	0.24	0.86
80553	В	0	5	-1.72	0.4	0.44
80553	С	0	4	-0.77	0.37	1.03
80553	D	0	6	-2.08	0.39	0.32
80554	Α	1	22	1.29	0.3	0.87
80554	В	0	15	-0.29	0.16	0.63
80554	С	0	8	-0.13	0.19	0.71
80554	D	0	0	0	0	0
80555	Α	1	24	0.98	0.29	0.7
80555	В	0	8	-0.46	0.12	0.67
80555	С	0	8	-0.58	0.15	0.61
80555	D	0	4	-2.46	0.64	0.17
80556	Α	1	31	0.2	0.22	1.51
80556	В	0	2	0.45	0.16	1.85
80556	С	0	7	0.37	0.55	4.18
80556	D	0	8	-1.18	0.41	0.55
80557	Α	1	29	0.43	0.21	0.92

80557	В	0	7	0.08	0.35	1.86
80557	С	0	7	-1.05	0.39	0.63
80557	D	0	5	-1.63	0.63	0.43
80558	Α	1	24	0.36	0.22	1.05
80558	В	0	8	-0.48	0.37	1.44
80558	С	0	8	-0.1	0.17	1.16
80558	D	0	8	-1.66	0.63	0.47
80559	Α	1	25	0.15	0.19	0.92
80559	В	0	7	0.1	0.51	3.28
80559	С	0	7	-0.75	0.84	1.98
80559	D	0	7	-1.74	0.39	0.39
80560	Α	1	36	0.49	0.22	0.87
80560	В	0	4	-1.03	0.33	0.66
80560	С	0	1	-0.28	0	1.18
80560	D	0	8	-2.08	0.53	0.41
80561	Α	1	36	-0.06	0.17	0.76
80561	В	0	2	-1.71	0.08	0.36
80561	С	0	3	-0.88	0.31	0.91
80561	D	0	7	-1.87	0.41	0.49
80562	Α	1	30	0.15	0.27	0.96
80562	В	0	6	-0.31	0.12	1.33
80562	С	0	3	-0.87	0.39	0.85
80562	D	0	5	-2.42	0.48	0.28
80563	Α	1	37	0.3	0.19	0.81
80563	В	0	1	-2.51	0	0.12
80563	С	0	6	-0.39	0.19	0.99
80563	D	0	2	-3.4	1.69	0.15
80564	Α	1	21	0.76	0.3	0.97
80564	В	0	4	-0.54	0.48	1
80564	С	0	10	-0.66	0.21	0.75
80564	D	0	9	-1.5	0.43	0.49
80565	Α	1	32	0.07	0.12	0.78
80565	В	0	5	-1.12	0.31	0.6
80565	С	0	5	-1.27	0.43	0.58
80565	D	0	5	-0.99	0.67	1.03
80566	Α	1	37	-0.12	0.16	0.93

80566	В	0	5	-1.04	0.37	0.89
80566	С	0	3	-0.51	0.64	1.86
80566	D	0	5	-3.16	0.77	0.27
80567	Α	1	37	0.19	0.21	0.91
80567	В	0	1	-0.33	0	1.2
80567	С	0	2	-1.16	0.02	0.52
80567	D	0	5	-1.91	0.23	0.28
80568	Α	1	31	0.39	0.18	0.61
80568	В	0	6	-0.91	0.35	0.87
80568	С	0	2	-0.89	0.29	0.69
80568	D	0	6	-2.83	0.55	0.16
80569	Α	1	36	0.36	0.25	0.89
80569	В	0	5	-0.62	0.25	0.87
80569	С	0	1	0.32	0	1.93
80569	D	0	3	-2.8	1.16	0.2
80570	Α	1	26	0.74	0.31	0.82
80570	В	0	7	-0.64	0.44	0.91
80570	С	0	7	-0.67	0.49	1.49
80570	D	0	6	-2.34	1.02	0.54
80571	Α	1	28	0.9	0.29	0.66
80571	В	0	5	-0.48	0.37	0.85
80571	С	0	6	0.2	0.34	1.94
80571	D	0	8	-2.64	0.4	0.16
80572	Α	1	34	0.41	0.27	1.04
80572	В	0	6	-0.98	0.36	0.65
80572	С	0	4	0.15	0.3	1.67
80572	D	0	3	-1.06	0.8	0.81
80573	Α	1	28	0.28	0.14	0.94
80573	В	0	7	-0.5	0.28	0.78
80573	С	0	9	-0.38	0.27	0.96
80573	D	0	4	-0.62	0.36	0.73
80574	Α	1	25	0.47	0.2	0.75
80574	В	0	7	-0.5	0.25	0.83
80574	С	0	6	-0.52	0.29	0.87
80574	D	0	6	-1.54	0.32	0.33
80575	Α	1	17	0.74	0.25	0.89

80575	В	0	7	-0.19	0.27	0.93
80575	С	0	14	-0.52	0.17	0.67
80575	D	0	8	-1.03	0.56	0.65
80576	Α	1	33	0.56	0.25	1.12
80576	В	0	10	-0.27	0.26	0.95
80576	С	0	3	-0.72	0.05	0.48
80576	D	0	2	-0.46	0.54	0.72
80577	Α	1	12	0.57	0.3	1.14
80577	В	0	20	-0.24	0.18	1.09
80577	С	0	2	-0.58	1.06	0.91
80577	D	0	9	-1.29	0.33	0.4
80578	Α	1	16	0.55	0.28	1.38
80578	В	0	20	0.36	0.18	1.38
80578	С	0	1	0.94	0	1.82
80578	D	0	8	-1.16	0.49	0.42
80579	Α	1	22	0.25	0.28	0.91
80579	В	0	5	-0.7	0.35	0.8
80579	С	0	12	-0.48	0.23	1.07
80579	D	0	9	-0.88	0.15	0.6
80580	Α	1	28	0.11	0.19	0.84
80580	В	0	6	-0.74	0.34	1.1
80580	С	0	5	-0.69	0.31	1.01
80580	D	0	6	-1.91	0.37	0.34
80581	Α	1	28	0.63	0.3	0.88
80581	В	0	8	-0.16	0.44	1.97
80581	С	0	4	-0.15	0.68	1.87
80581	D	0	6	-1.74	0.62	0.43
80582	Α	1	22	0.86	0.3	0.68
80582	В	0	8	-0.51	0.28	0.82
80582	С	0	8	-0.31	0.23	0.93
80582	D	0	4	-3.25	0.72	0.08
80583	Α	1	37	0.46	0.16	0.82
80583	В	0	4	-0.23	0.34	1.02
80583	С	0	3	-1.18	0.45	0.41
80583	D	0	2	-1.74	0.39	0.21
80584	Α	1	31	0.94	0.28	0.83

80584	В	0	2	-1.72	0.18	0.17
80584	С	0	9	-0.22	0.19	0.82
80584	D	0	1	-2.32	0	0.11
80585	Α	1	23	0.79	0.29	0.8
80585	В	0	14	-0.58	0.22	0.73
80585	С	0	2	-0.1	0.02	0.88
80585	D	0	8	-0.88	0.55	0.89
80586	Α	1	22	0.16	0.13	0.76
80586	В	0	7	-1.07	0.7	0.88
80586	С	0	10	-0.6	0.29	1.05
80586	D	0	6	-1.38	0.38	0.48
80587	Α	1	21	0.29	0.2	0.97
80587	В	0	5	-0.72	0.49	0.85
80587	С	0	12	-0.39	0.19	0.94
80587	D	0	5	-1.01	0.32	0.51
80588	Α	1	34	0.56	0.2	0.86
80588	В	0	7	-0.71	0.41	0.69
80588	С	0	4	-0.21	0.72	1.9
80588	D	0	2	-1.71	1.19	0.34
80589	Α	1	27	0.06	0.19	0.92
80589	В	0	8	-0.87	0.36	0.95
80589	С	0	3	-0.28	0.85	2.04
80589	D	0	6	-1.55	0.49	0.54
80590	Α	1	25	-0.06	0.18	1.07
80590	В	0	6	-0.2	0.33	1.59
80590	С	0	6	-0.05	0.26	1.61
80590	D	0	7	-1.53	0.36	0.48
80591	Α	1	36	-0.06	0.2	0.79
80591	В	0	8	-1.46	0.35	0.64
80591	С	0	1	-0.56	0	1.09
80591	D	0	2	-2.44	0.35	0.19
80592	Α	1	14	0.17	0.19	0.7
80592	В	0	18	-0.72	0.33	1.36
80592	С	0	4	-0.98	0.47	0.76
80592	D	0	7	-2.22	0.57	0.32
80593	Α	1	23	0.44	0.24	0.76

80593	В	0	8	-0.5	0.23	0.98
80593	С	0	7	-0.62	0.42	1.57
80593	D	0	8	-1.7	0.41	0.51
80594	Α	1	27	0.74	0.29	0.9
80594	В	0	3	-0.98	0.67	0.57
80594	С	0	9	0.03	0.2	1.17
80594	D	0	5	-1.75	1.07	0.62
80595	Α	1	18	1.19	0.49	0.79
80595	В	0	8	-0.5	0.36	1.07
80595	С	0	13	-0.91	0.27	0.61
80595	D	0	9	-0.97	0.63	1.2
80596	Α	1	27	0.41	0.23	0.82
80596	В	0	8	-0.38	0.44	1.82
80596	С	0	4	-0.5	0.42	1.09
80596	D	0	8	-1.85	0.53	0.4
80597	Α	1	38	0.21	0.21	0.87
80597	В	0	1	-1.09	0	0.53
80597	С	0	6	-0.58	0.36	1.27
80597	D	0	3	-3.1	1.23	0.28
80598	Α	1	39	0.37	0.18	1.09
80598	В	0	4	-0.22	0.23	1.01
80598	С	0	3	-1.12	0.15	0.39
80598	D	0	1	-1.02	0	0.42
80599	Α	1	19	1.04	0.23	0.53
80599	В	0	13	-0.73	0.19	0.59
80599	С	0	6	-0.75	0.17	0.53
80599	D	0	5	-2.36	0.86	0.28
80600	Α	1	31	0.46	0.22	1.08
80600	В	0	4	-0.4	0.14	0.76
80600	С	0	6	-0.46	0.17	0.75
80600	D	0	4	-1.36	0.79	0.64
80601	Α	1	18	1.41	0.4	0.86
80601	В	0	5	0.17	0.28	0.84
80601	С	0	14	0.14	0.29	1.33
80601	D	0	6	-0.98	0.37	0.31
80602	Α	1	22	1.14	0.32	0.68

80602	В	0	10	-0.53	0.27	0.82
80602	С	0	8	-0.6	0.27	0.72
80602	D	0	6	-1.71	0.36	0.24
80603	Α	1	35	0.35	0.16	0.84
80603	В	0	4	-0.74	0.09	0.59
80603	С	0	2	-0.04	0.47	1.3
80603	D	0	5	-1.55	0.17	0.27
80604	Α	1	18	0.36	0.29	1.12
80604	В	0	10	-0.18	0.37	2.05
80604	С	0	4	0.14	0.32	1.38
80604	D	0	12	-0.94	0.49	0.82
80605	Α	1	8	0.74	0.41	0.9
80605	В	0	15	-0.37	0.33	1.23
80605	С	0	10	-0.22	0.38	1.39
80605	D	0	12	-0.92	0.28	0.54
80606	Α	1	8	1.96	0.35	0.25
80606	В	0	9	-0.62	0.18	0.53
80606	С	0	15	-0.27	0.18	0.76
80606	D	0	13	-1.55	0.33	0.28
80607	Α	1	16	0.67	0.23	0.8
80607	В	0	7	-0.16	0.28	0.92
80607	С	0	7	0.11	0.36	1.46
80607	D	0	14	-0.53	0.3	0.85
80608	Α	1	33	1	0.27	0.75
80608	В	0	2	0.27	1.13	2.33
80608	С	0	6	-0.74	0.09	0.51
80608	D	0	5	-1.88	0.5	0.24
80609	Α	1	23	0.6	0.23	0.86
80609	В	0	11	-0.4	0.2	0.78
80609	С	0	10	-0.29	0.32	1.08
80609	D	0	2	-0.69	0.12	0.48
80610	Α	1	12	0.58	0.3	0.98
80610	В	0	14	0.19	0.24	1.57
80610	С	0	7	-0.51	0.22	0.63
80610	D	0	12	-1.04	0.38	0.58
80611	Α	1	19	0.91	0.27	0.77

80611	В	0	9	-0.3	0.21	0.81
80611	С	0	5	-0.36	0.22	0.69
80611	D	0	12	-0.82	0.29	0.62
80612	Α	1	23	0.7	0.3	0.9
80612	В	0	9	-0.59	0.26	0.74
80612	С	0	4	0.65	0.66	3.17
80612	D	0	12	-1.09	0.46	0.63
80613	Α	1	19	0.93	0.39	1.01
80613	В	0	8	-0.08	0.3	1.11
80613	С	0	7	-0.31	0.32	0.85
80613	D	0	13	-0.98	0.42	0.56
80614	Α	1	12	0.52	0.38	1.27
80614	В	0	11	-0.22	0.13	0.91
80614	С	0	14	-0.31	0.18	0.96
80614	D	0	8	-0.97	0.15	0.43
80615	Α	1	11	0.81	0.31	0.75
80615	В	0	9	-0.54	0.19	0.62
80615	С	0	16	0.17	0.2	1.35
80615	D	0	11	-1.51	0.49	0.42
80616	Α	1	17	0.7	0.28	1
80616	В	0	8	-0.41	0.38	1.04
80616	С	0	11	-0.12	0.26	1.12
80616	D	0	9	-0.92	0.34	0.51
80617	Α	1	22	1.08	0.29	0.81
80617	В	0	3	-0.85	0.16	0.37
80617	С	0	12	-0.44	0.15	0.62
80617	D	0	8	-0.61	0.37	0.68
80618	Α	1	25	1.22	0.31	0.77
80618	В	0	9	-0.54	0.62	1.02
80618	С	0	4	-0.65	0.1	0.44
80618	D	0	10	-1.18	0.42	0.46
80619	Α	1	11	0.47	0.28	1.15
80619	В	0	9	0.04	0.42	1.93
80619	С	0	13	0.39	0.28	1.62
80619	D	0	12	-1.03	0.36	0.52
80620	Α	1	20	0.72	0.24	0.82

80620	В	0	9	-0.05	0.29	1.18
80620	С	0	7	-0.85	0.34	0.57
80620	D	0	10	-0.83	0.28	0.55
80621	Α	1	13	0.07	0.4	1.98
80621	В	0	10	-0.4	0.14	0.94
80621	С	0	9	-0.7	0.22	0.75
80621	D	0	8	-1.02	0.62	0.87
80622	Α	1	12	0.56	0.33	0.83
80622	В	0	13	-0.3	0.24	1.12
80622	С	0	9	-0.58	0.3	0.8
80622	D	0	8	-0.65	0.43	0.92
80623	Α	1	32	0.33	0.24	1.01
80623	В	0	3	-0.82	0.69	0.87
80623	С	0	3	-0.57	0.24	0.79
80623	D	0	6	-1.42	0.42	0.47
80624	Α	1	19	0.59	0.18	0.94
80624	В	0	10	0.02	0.15	0.84
80624	С	0	9	0.16	0.46	1.93
80624	D	0	8	-0.55	0.49	0.8
80625	Α	1	26	0.19	0.21	0.74
80625	В	0	10	-1.35	0.2	0.55
80625	С	0	3	-0.91	0.46	0.88
80625	D	0	3	-3.18	0.71	0.17
80626	Α	1	23	0.64	0.24	0.6
80626	В	0	11	-1.01	0.29	0.76
80626	С	0	3	-1.06	0.54	0.61
80626	D	0	5	-1.79	0.33	0.31
80627	Α	1	18	0.7	0.23	0.82
80627	В	0	9	-0.31	0.27	0.85
80627	С	0	9	-0.09	0.3	1.1
80627	D	0	11	-0.83	0.41	0.65
80628	Α	1	13	1.05	0.57	1.37
80628	В	0	12	-0.47	0.22	0.63
80628	С	0	11	0.14	0.24	1.21
80628	D	0	10	-0.33	0.39	0.91
80629	Α	1	13	0.67	0.33	1.11

80629	В	0	13	-0.88	0.4	0.64
80629	С	0	12	0.16	0.33	1.64
80629	D	0	7	-0.37	0.48	0.91
80630	Α	1	15	0.35	0.28	0.81
80630	В	0	6	-0.41	0.38	1.26
80630	С	0	14	-0.69	0.25	0.97
80630	D	0	9	-1.89	0.36	0.37
80631	Α	1	18	0.41	0.34	1.08
80631	В	0	6	-0.13	0.28	1.1
80631	С	0	8	-0.15	0.39	1.49
80631	D	0	15	-0.78	0.32	0.83
80632	Α	1	15	0.1	0.35	2.89
80632	В	0	10	-0.28	0.34	1.17
80632	С	0	10	-0.03	0.36	1.46
80632	D	0	9	-0.55	0.4	1.14
80633	Α	1	19	1.3	0.46	0.83
80633	В	0	9	0.43	0.62	4.69
80633	С	0	4	-0.14	0.68	1.28
80633	D	0	10	-1.56	0.52	0.42
80634	Α	1	16	1.04	0.38	0.82
80634	В	0	4	-0.74	0.1	0.41
80634	С	0	10	-0.23	0.53	1.21
80634	D	0	11	-1.13	0.51	0.66
80635	Α	1	24	0.24	0.17	0.74
80635	В	0	10	-0.52	0.24	1.1
80635	С	0	3	-1.23	0.64	0.6
80635	D	0	6	-2.11	0.43	0.31
80636	Α	1	28	0.27	0.28	1.15
80636	В	0	12	-0.44	0.35	2.33
80636	С	0	1	-0.96	0	0.54
80636	D	0	3	-2.78	1.29	0.23
80637	Α	1	35	0.04	0.15	0.98
80637	В	0	4	0.63	0.73	5.07
80637	С	0	5	-0.82	0.3	0.72
80637	D	0	2	-2.34	0.29	0.15
80638	Α	1	7	1.59	0.9	1.74

80638	В	0	13	0.31	0.31	1.32
80638	С	0	14	0.4	0.2	1.03
80638	D	0	13	-1.27	0.36	0.35
80639	Α	1	8	0.47	0.53	1.75
80639	В	0	17	-0.47	0.37	1.16
80639	С	0	10	-0.32	0.27	1.01
80639	D	0	10	-2.15	0.6	0.4
80640	Α	1	13	0.46	0.29	1.04
80640	В	0	10	0.01	0.25	1.22
80640	С	0	12	-0.54	0.51	1.12
80640	D	0	11	-0.6	0.33	0.75
80641	Α	1	26	0.53	0.26	0.7
80641	В	0	4	-1.79	1.11	0.64
80641	С	0	7	-0.39	0.58	2.2
80641	D	0	8	-1.8	0.33	0.34
80642	Α	1	16	1.11	0.46	0.86
80642	В	0	9	0.06	0.31	1.31
80642	С	0	9	0.01	0.43	1.73
80642	D	0	13	-1.75	0.49	0.39
80643	Α	1	17	-0.04	0.4	1.75
80643	В	0	7	-0.28	0.5	2.04
80643	С	0	12	0.6	0.25	2.7
80643	D	0	11	-1.11	0.43	0.56
80644	Α	1	9	1.28	0.69	1.17
80644	В	0	9	-0.57	0.29	0.57
80644	С	0	16	-0.54	0.41	0.89
80644	D	0	12	-0.16	0.36	1.13
80645	Α	1	9	1.66	0.59	0.59
80645	В	0	12	-0.11	0.22	0.91
80645	С	0	11	-0.95	0.46	0.58
80645	D	0	13	-0.77	0.32	0.56
80646	Α	1	13	0.45	0.4	1.72
80646	В	0	7	-0.42	0.28	0.79
80646	С	0	9	-0.36	0.67	1.56
80646	D	0	14	-0.56	0.39	1.45
80647	Α	1	15	0.19	0.26	1.02

80647	В	0	14	-0.38	0.28	1.18
80647	С	0	13	-0.75	0.27	0.82
80647	D	0	3	-3.31	0.89	0.1
80648	Α	1	14	0.04	0.34	1.17
80648	В	0	6	-0.31	0.25	1.1
80648	С	0	6	-0.43	0.31	1.05
80648	D	0	17	-0.99	0.45	1.08
80649	Α	1	15	1.18	0.53	1.1
80649	В	0	5	-0.19	0.38	0.89
80649	С	0	15	-0.03	0.24	1.19
80649	D	0	12	-1.91	0.54	0.41
80650	Α	1	13	0.74	0.43	0.64
80650	В	0	8	-0.23	0.27	1.1
80650	С	0	4	-0.76	0.22	0.56
80650	D	0	19	-0.84	0.28	0.83
80651	Α	1	34	0.31	0.25	0.77
80651	В	0	2	-2.08	1.59	0.84
80651	С	0	1	0.16	0	2.36
80651	D	0	8	-2.71	0.49	0.28
80652	Α	1	32	0.6	0.28	0.79
80652	В	0	3	0.36	0.17	1.93
80652	С	0	2	-1.59	1.11	0.45
80652	D	0	5	-1.73	0.51	0.46
80653	Α	1	36	0.19	0.3	1.14
80653	В	0	4	-0.31	0.37	1.97
80653	С	0	0	0	0	0
80653	D	0	4	-3.02	0.83	0.2
80654	Α	1	31	-0.23	0.21	1.24
80654	В	0	5	-1.77	0.31	0.44
80654	С	0	4	-0.37	0.5	2.05
80654	D	0	1	-1.97	0	0.3
80655	Α	1	40	0.48	0.27	1.12
80655	В	0	1	-1.02	0	0.55
80655	С	0	4	-0.96	0.26	0.64
80655	D	0	1	-3.12	0	0.09
80656	Α	1	33	0.61	0.27	0.8

80656	В	0	1	-0.33	0	0.88
80656	С	0	4	-0.69	0.17	0.65
80656	D	0	5	-1.96	0.83	0.42
80657	Α	1	29	0.78	0.25	0.57
80657	В	0	1	-1.35	0	0.38
80657	С	0	7	-1.75	0.34	0.34
80657	D	0	5	-1.8	0.53	0.39
80658	Α	1	34	1	0.25	0.8
80658	В	0	6	-0.28	0.44	1.17
80658	С	0	1	-1.81	0	0.15
80658	D	0	3	-1.11	0.43	0.34
80659	Α	1	36	0.25	0.26	1.07
80659	В	0	1	-0.29	0	1.3
80659	С	0	6	-1.17	0.4	0.73
80659	D	0	4	-1.99	0.9	0.69
80660	Α	1	31	0.37	0.16	0.68
80660	В	0	4	-1.18	0.32	0.51
80660	С	0	2	-0.67	0.04	0.73
80660	D	0	8	-1.58	0.46	0.59
80661	Α	1	29	0.47	0.19	0.78
80661	В	0	3	-0.63	0.46	0.83
80661	С	0	4	-0.71	0.69	1.06
80661	D	0	2	-3.94	1.52	0.08
80662	Α	1	36	0.47	0.27	0.96
80662	В	0	5	-0.5	0.44	1.16
80662	С	0	3	-1.25	0.46	0.5
80662	D	0	1	-2.64	0	0.1
80663	Α	1	32	0.58	0.18	0.76
80663	В	0	6	-1.38	0.21	0.33
80663	С	0	4	-0.69	0.12	0.6
80663	D	0	1	-1.61	0	0.28
80664	Α	1	25	0.6	0.38	1.33
80664	В	0	3	-0.41	0.29	0.88
80664	С	0	6	-0.15	0.35	1.5
80664	D	0	6	-1.89	0.41	0.27
80665	Α	1	26	0.23	0.2	0.92

80665	В	0	3	-0.27	0.18	1
80665	С	0	2	-0.24	0.2	1.01
80665	D	0	4	-1.47	0.77	0.61
80666	Α	1	27	0.17	0.14	0.79
80666	В	0	4	-0.6	0.13	0.8
80666	С	0	8	-0.79	0.22	0.74
80666	D	0	3	-2.31	0.21	0.15
80667	Α	1	29	0.84	0.24	0.71
80667	В	0	8	-0.81	0.16	0.56
80667	С	0	0	0	0	0
80667	D	0	5	-1.76	0.37	0.26
80668	Α	1	30	1.01	0.28	0.87
80668	В	0	4	-0.63	0.13	0.53
80668	С	0	6	-0.08	0.3	1.14
80668	D	0	6	-2.25	0.6	0.22
80669	Α	1	27	0.89	0.25	0.76
80669	В	0	6	-0.8	0.24	0.5
80669	С	0	4	-1.08	0.53	0.47
80669	D	0	2	-0.86	0.67	0.51
80670	Α	1	37	0.26	0.19	0.88
80670	В	0	3	-1.79	0.76	0.36
80670	С	0	4	-0.61	0.47	1.04
80670	D	0	1	-1.21	0	0.42
80671	Α	1	24	0.49	0.2	0.54
80671	В	0	4	-1.65	0.54	0.46
80671	С	0	6	-0.99	0.38	0.84
80671	D	0	5	-3.24	0.79	0.16
80672	Α	1	23	0.75	0.29	0.73
80672	В	0	17	-0.64	0.16	0.74
80672	С	0	3	-1.09	0.11	0.4
80672	D	0	3	-3.02	1.11	0.13
80673	Α	1	18	1.37	0.48	0.85
80673	В	0	14	-0.51	0.21	0.81
80673	С	0	10	-0.77	0.15	0.51
80673	D	0	4	-2.08	1	0.36
80674	Α	1	32	0.43	0.25	1.04

80674	В	0	6	-1.23	0.5	0.76
80674	С	0	3	-0.4	0.55	1.25
80674	D	0	2	-1.45	0.76	0.42
80675	Α	1	26	0.65	0.28	0.95
80675	В	0	6	-0.44	0.2	0.72
80675	С	0	11	-0.57	0.29	0.79
80675	D	0	4	-0.53	0.56	0.93
80676	Α	1	30	0.58	0.23	0.84
80676	В	0	5	-0.65	0.29	0.71
80676	С	0	5	-1.37	0.61	0.51
80676	D	0	6	-0.91	0.48	0.71
80677	Α	1	19	0.78	0.37	1.3
80677	В	0	7	0.21	0.9	3.77
80677	С	0	16	-0.37	0.38	1.22
80677	D	0	4	-1.28	0.45	0.34
80678	Α	1	32	0.8	0.21	0.67
80678	В	0	7	-0.86	0.17	0.47
80678	С	0	2	-0.63	0.75	0.7
80678	D	0	4	-1.36	0.34	0.32
80679	Α	1	29	0.91	0.26	1
80679	В	0	10	-0.36	0.2	0.61
80679	С	0	5	-0.08	0.37	0.91
80679	D	0	2	0.7	0.63	1.8
80680	Α	1	31	0.75	0.22	0.89
80680	В	0	5	-0.3	0.29	0.85
80680	С	0	6	-0.61	0.34	0.74
80680	D	0	5	-1.37	0.52	0.39
80681	Α	1	20	0.74	0.22	0.76
80681	В	0	11	-0.3	0.23	0.98
80681	С	0	9	-0.55	0.25	0.7
80681	D	0	7	-1.01	0.35	0.47
80682	Α	1	24	0.6	0.44	1.31
80682	В	0	3	-0.22	0.28	1.12
80682	С	0	6	-0.51	0.24	0.91
80682	D	0	12	-1.04	0.43	0.86
80683	Α	1	25	0.93	0.36	0.86

80683	В	0	9	-0.49	0.22	0.76
80683	С	0	5	-0.97	0.32	0.48
80683	D	0	4	-0.59	0.59	0.94
80684	Α	1	25	1.04	0.26	0.91
80684	В	0	11	0.05	0.2	0.91
80684	С	0	2	0.03	1.02	1.11
80684	D	0	5	-0.83	0.68	0.66
80685	Α	1	25	0.91	0.3	0.84
80685	В	0	5	-0.34	0.27	0.78
80685	С	0	7	-0.66	0.37	0.67
80685	D	0	9	-0.92	0.47	0.77
80686	Α	1	14	1.03	0.45	0.86
80686	В	0	21	-0.19	0.15	1.02
80686	С	0	4	-0.77	0.68	0.85
80686	D	0	7	-1.26	0.36	0.38
80687	Α	1	25	0.65	0.27	0.82
80687	В	0	7	-0.42	0.22	0.84
80687	С	0	3	-0.38	0.41	0.88
80687	D	0	9	-1.26	0.38	0.51
80688	Α	1	12	0.98	0.52	2.97
80688	В	0	15	0.33	0.22	1.38
80688	С	0	8	-1.16	0.66	0.42
80688	D	0	8	-1.21	0.31	0.33
80689	Α	1	16	0.67	0.35	1.3
80689	В	0	11	0.14	0.24	1.23
80689	С	0	11	-0.19	0.29	1
80689	D	0	8	-1.25	0.66	0.55
80690	Α	1	19	0.71	0.34	1.72
80690	В	0	15	-0.1	0.44	1.43
80690	С	0	3	0.32	0.36	1.2
80690	D	0	8	-0.82	0.21	0.39
80691	Α	1	17	0.23	0.18	1.01
80691	В	0	19	-0.01	0.18	1.35
80691	С	0	7	-0.85	0.23	0.49
80691	D	0	2	-0.73	0.1	0.5
80692	Α	1	27	0.81	0.27	1.03

80692	В	0	5	-0.16	0.22	0.79
80692	С	0	9	-0.12	0.18	0.84
80692	D	0	5	-0.91	0.57	0.56
80693	Α	1	20	0.81	0.38	0.87
80693	В	0	20	-0.21	0.17	1.07
80693	С	0	3	-1.62	0.28	0.22
80693	D	0	4	-1.11	0.36	0.39
80694	Α	1	28	0.45	0.23	1.02
80694	В	0	3	-1.04	0.79	0.67
80694	С	0	15	-0.2	0.19	1.11
80694	D	0	2	-1.17	0.84	0.45
80695	Α	1	20	0.36	0.21	0.96
80695	В	0	5	-0.62	0.31	0.69
80695	С	0	12	-0.02	0.22	1.36
80695	D	0	6	-1.93	0.71	0.36
80696	Α	1	16	0.16	0.26	1.51
80696	В	0	9	-0.8	0.79	1.91
80696	С	0	16	0.2	0.3	1.96
80696	D	0	6	-1.6	0.58	0.48
80697	Α	1	20	0.35	0.41	1.83
80697	В	0	11	-0.33	0.17	0.7
80697	С	0	10	0.97	0.57	4.86
80697	D	0	5	-0.12	0.28	0.84
80698	Α	1	21	0.45	0.33	1.26
80698	В	0	7	-0.33	0.66	3.07
80698	С	0	7	0.18	0.41	2.06
80698	D	0	13	-0.88	0.26	0.59
80699	Α	1	19	0.55	0.42	1.5
80699	В	0	15	-0.05	0.31	1.69
80699	С	0	6	-0.36	0.51	1.01
80699	D	0	6	-0.38	0.42	0.9
80700	Α	1	18	0.84	0.3	1.03
80700	В	0	29	-0.2	0.23	1
80700	С	0	2	-0.91	0.2	0.33
80700	D	0	8	-0.87	0.28	0.43
80701	Α	1	30	0.11	0.18	0.93

80701	В	0	6	-0.82	0.38	0.97
80701	С	0	7	-0.86	0.46	1.04
80701	D	0	5	-1.55	0.42	0.45
80702	Α	1	24	0.62	0.3	0.82
80702	В	0	7	-1.21	0.24	0.48
80702	С	0	9	-0.79	0.19	0.75
80702	D	0	2	-3.42	1.5	0.13
80703	Α	1	36	0.21	0.14	0.88
80703	В	0	3	-0.23	0.64	1.45
80703	С	0	5	-0.68	0.6	1.3
80703	D	0	1	-1.29	0	0.34
80704	Α	1	24	0.6	0.2	0.8
80704	В	0	6	-0.45	0.38	0.99
80704	С	0	14	-0.37	0.12	0.75
80704	D	0	3	-1.75	0.82	0.34
80705	Α	1	24	-0.03	0.16	0.91
80705	В	0	10	-1	0.52	0.9
80705	С	0	9	-0.91	0.42	0.95
80705	D	0	5	-0.96	0.29	0.67
80706	Α	1	31	0.18	0.23	1.21
80706	В	0	1	-1.27	0	0.4
80706	С	0	12	-0.51	0.21	1.07
80706	D	0	2	-1.95	1.04	0.33
80707	Α	1	26	0.37	0.26	0.96
80707	В	0	7	-0.64	0.15	0.73
80707	С	0	8	-0.32	0.17	1.06
80707	D	0	6	-2.37	0.75	0.32
80708	Α	1	19	0.41	0.36	1.25
80708	В	0	11	-0.49	0.12	0.66
80708	С	0	9	-0.33	0.21	0.86
80708	D	0	6	0.44	0.29	1.88
80709	Ā	1	30	0.42	0.24	0.99
80709	В	0	9	-0.94	0.2	0.61
80709	C	Ö	4	-1.22	0.57	0.68
80709	D	Ö	1	-0.95	0	0.51
80710	A	1	32	0.56	0.24	1
		•	-	5.55	₹. = '	•

80710	В	0	2	-1.06	0.79	0.58
80710	С	0	5	-0.23	0.18	1.09
80710	D	0	4	-2.52	1.01	0.24
80711	Α	1	39	0.28	0.18	0.98
80711	В	0	3	-0.51	0.5	1.12
80711	С	0	1	-0.56	0	0.83
80711	D	0	4	-2.08	0.46	0.25
80712	Α	1	42	0.31	0.23	1.03
80712	В	0	2	-0.62	0.03	0.8
80712	С	0	0	0	0	0
80712	D	0	1	-1.78	0	0.25
80713	Α	1	6	-0.62	0.32	4.2
80713	В	0	4	-0.13	0.82	1.46
80713	С	0	32	0.36	0.19	1.66
80713	D	0	1	-0.13	0	0.52
80714	Α	1	35	0.18	0.29	1.02
80714	В	0	2	-1.57	0.62	0.49
80714	С	0	2	-0.65	0.16	1.02
80714	D	0	5	-1.53	0.53	0.73
80715	Α	1	38	0.58	0.2	1.01
80715	В	0	1	-0.21	0	0.83
80715	С	0	5	-0.78	0.16	0.5
80715	D	0	1	0.16	0	1.2
80716	Α	1	39	0.33	0.21	0.95
80716	В	0	6	-1.03	0.45	0.83
80716	С	0	0	0	0	0
80716	D	0	1	-1.74	0	0.25
80717	Α	1	40	0.12	0.17	0.79
80717	В	0	2	-1.66	0.96	0.47
80717	С	0	1	0.06	0	1.74
80717	D	0	4	-1.74	0.56	0.44
80718	Α	1	35	0.82	0.25	0.78
80718	В	0	7	-1.06	0.2	0.43
80718	С	0	2	-0.52	0.25	0.69
80718	D	0	1	-3.14	0	0.06
80719	Α	1	28	0.54	0.31	1.04

80719	В	0	12	0.01	0.24	1.64
80719	C	0	3	-0.83	0.25	0.51
80719	D	0	4	-2.08	1.12	0.35
80720	Α	1	27	0.56	0.31	0.89
80720	В	0	12	-0.79	0.23	0.71
80720	С	0	3	0.05	0.66	2.04
80720	D	0	2	-1.7	1.43	0.5
80721	Α	1	32	0.49	0.21	0.97
80721	В	0	4	-1.67	0.28	0.27
80721	С	0	6	-0.73	0.14	0.65
80721	D	0	4	-1	0.43	0.65
80722	Α	1	33	0.91	0.27	0.73
80722	В	0	7	-0.79	0.3	0.68
80722	С	0	4	-0.97	0.58	0.7
80722	D	0	3	-3.15	1.11	0.12
80723	Α	1	16	1.25	0.5	0.97
80723	В	0	12	0.05	0.19	1.16
80723	С	0	6	-0.94	0.18	0.39
80723	D	0	8	-1.64	0.63	0.39
80724	Α	1	13	0.69	0.32	0.9
80724	В	0	5	-0.16	0.53	1.64
80724	С	0	21	-0.22	0.22	1.15
80724	D	0	6	-2.79	0.49	0.1
80725	Α	1	25	1.01	0.29	0.8
80725	В	0	8	-0.95	0.64	0.76
80725	С	0	3	-0.71	0.18	0.47
80725	D	0	8	-1.02	0.62	0.65
80726	Α	1	32	0.22	0.23	0.89
80726	В	0	8	-0.72	0.3	0.89
80726	С	0	4	-1.55	0.81	0.63
80726	D	0	2	-0.95	0.48	0.61
80727	Α	1	18	0.34	0.24	1.11
80727	В	0	15	0.38	0.33	2.84
80727	С	0	4	-1.52	0.76	0.37
80727	D	0	9	-1.16	0.58	0.52
80728	Α	1	25	0.57	0.3	1

80728	В	0	12	-0.21	0.13	0.96
80728	С	0	2	-0.84	1.67	1.28
80728	D	0	6	-1.78	0.91	0.62
80729	Α	1	26	0.88	0.31	0.78
80729	В	0	5	-0.7	0.24	0.6
80729	С	0	10	-0.14	0.31	1.4
80729	D	0	5	-3.26	0.93	0.15
80730	Α	1	32	0.66	0.27	1.15
80730	В	0	7	-0.61	0.56	1.33
80730	С	0	1	0.17	0	1.51
80730	D	0	5	-3.69	0.92	0.21
80731	Α	1	26	0.32	0.29	0.92
80731	В	0	5	-0.93	0.16	0.57
80731	С	0	3	0.36	0.78	3.71
80731	D	0	10	-0.96	0.23	0.65
80732	Α	1	34	0.58	0.17	0.81
80732	В	0	5	-0.4	0.21	0.75
80732	С	0	1	-1.89	0	0.16
80732	D	0	2	-1.63	0.44	0.22
80733	Α	1	42	0.57	0.23	0.88
80733	В	0	1	-1.21	0	0.35
80733	С	0	4	0.08	0.4	1.57
80733	D	0	2	-3.29	2.08	0.19
80734	Α	1	33	0.17	0.28	1.02
80734	В	0	4	-0.8	0.14	0.83
80734	С	0	5	-1	0.37	0.81
80734	D	0	1	-3.15	0	0.1
80735	Α	1	16	0.13	0.19	1.17
80735	В	0	14	-0.08	0.18	1.09
80735	С	0	9	-0.38	0.4	1.05
80735	D	0	8	-0.17	0.24	0.99
80736	Α	1	29	0.57	0.21	0.66
80736	В	0	4	-2.23	0.94	0.36
80736	С	0	9	-0.79	0.54	3.53
80736	D	0	3	-2.12	0.53	0.23
80737	Α	1	35	0.31	0.28	1.56

80737	В	0	4	-1.12	0.56	0.57
80737	С	0	8	-0.58	0.18	0.79
80737	D	0	0	0	0	0
80738	Α	1	25	0.66	0.32	0.98
80738	В	0	5	-0.29	0.32	1.09
80738	С	0	8	-0.23	0.45	2.02
80738	D	0	8	-2.13	0.51	0.29
80739	Α	1	25	0.16	0.29	1.01
80739	В	0	11	-0.75	0.29	1.01
80739	С	0	8	-0.78	0.3	0.91
80739	D	0	2	-1.11	0.11	0.49
80740	Α	1	30	0.56	0.28	0.82
80740	В	0	7	-0.99	0.26	0.69
80740	С	0	2	-1.11	0.52	0.55
80740	D	0	3	-2.21	0.31	0.2
80741	Α	1	31	0.43	0.22	1
80741	В	0	8	-0.43	0.44	1.96
80741	С	0	1	-0.33	0	0.86
80741	D	0	3	-1.5	0.76	0.46
80742	Α	1	24	0.81	0.22	0.9
80742	В	0	13	-0.05	0.27	1.14
80742	С	0	5	-0.51	0.21	0.53
80742	D	0	4	-2.15	1.16	0.35
80743	Α	1	25	0.14	0.23	1.18
80743	В	0	6	-0.93	0.22	0.58
80743	С	0	9	-0.32	0.33	1.52
80743	D	0	6	-0.89	0.58	1
80744	Α	1	33	0.77	0.26	0.9
80744	В	0	2	-0.16	0.42	0.94
80744	С	0	3	-0.65	0.56	0.67
80744	D	0	4	-1.31	0.46	0.36
80745	Α	1	21	1.09	0.37	0.8
80745	В	0	3	-1.01	0.38	0.35
80745	С	0	12	0.33	0.52	3.35
80745	D	0	8	-1.79	0.83	0.53
80746	Α	1	32	0.23	0.17	0.68

80746	В	0	4	-2	0.98	0.52
80746	C	0	3	-1.04	0.18	0.67
80746	D	0	6	-2.72	0.48	0.23
80747	Α	1	38	0.7	0.23	0.68
80747	В	0	3	-0.79	0.44	0.69
80747	С	0	3	-2.59	1.21	0.26
80747	D	0	1	-2.82	0	0.08
80748	Α	1	36	0	0.2	0.92
80748	В	0	3	-0.32	0.24	1.28
80748	С	0	1	-0.59	0	0.92
80748	D	0	2	-3.37	2.06	0.25
80749	Α	1	26	1.34	0.35	0.74
80749	В	0	4	-0.19	0.55	1.13
80749	С	0	9	-0.35	0.28	0.73
80749	D	0	7	-0.83	0.41	0.56
80750	Α	1	30	0.6	0.2	0.65
80750	В	0	5	-1.64	0.23	0.29
80750	С	0	3	-0.7	0.06	0.68
80750	D	0	4	-1.82	0.57	0.36
80751	Α	1	24	0.39	0.21	1.13
80751	В	0	7	-0.6	0.29	0.75
80751	С	0	8	-0.18	0.21	1.1
80751	D	0	4	-1.78	0.31	0.23
80752	Α	1	33	0.57	0.19	0.89
80752	В	0	4	-0.66	0.12	0.59
80752	С	0	2	-0.31	0.1	0.83
80752	D	0	3	-2.08	0.32	0.17
80753	Α	1	15	0.68	0.36	1.51
80753	В	0	9	0.2	0.23	1.26
80753	С	0	10	-0.3	0.3	1.06
80753	D	0	10	-0.68	0.34	0.63
80754	Α	1	18	1.7	0.43	1.34
80754	В	0	8	0.72	0.36	1.82
80754	С	0	5	-0.2	0.22	0.51
80754	D	0	14	-1	0.39	0.38
80755	Α	1	20	1.16	0.26	0.77

80755	В	0	5	-0.03	0.37	0.88
80755	С	0	8	-0.21	0.25	0.77
80755	D	0	13	-0.79	0.43	0.77
80756	Α	1	22	0.59	0.36	1.01
80756	В	0	4	0.29	0.58	2.73
80756	С	0	7	0.06	0.27	1.48
80756	D	0	10	-1.58	0.41	0.35
80757	Α	1	22	0.84	0.32	0.92
80757	В	0	7	-0.14	0.32	0.97
80757	С	0	8	-0.47	0.32	0.78
80757	D	0	7	-0.24	0.15	0.73
80758	Α	1	13	0.19	0.35	1.69
80758	В	0	7	0.31	0.34	1.67
80758	С	0	17	-0.57	0.33	0.96
80758	D	0	6	0.04	0.6	2.21
80759	Α	1	16	1.45	0.5	0.99
80759	В	0	6	-0.12	0.2	0.73
80759	С	0	6	-0.07	0.35	0.94
80759	D	0	15	-0.56	0.19	0.55
80760	Α	1	23	0.03	0.17	0.79
80760	В	0	7	-0.57	0.28	1.09
80760	С	0	6	-0.62	0.31	1.02
80760	D	0	6	-2.06	0.64	0.37
80761	Α	1	17	0.45	0.17	0.89
80761	В	0	9	-0.06	0.37	1.58
80761	С	0	10	0.39	0.34	2.12
80761	D	0	10	-1.96	0.68	0.39
80762	Α	1	19	0.96	0.54	1.09
80762	В	0	8	-1.33	0.54	0.57
80762	С	0	7	-0.42	0.24	0.88
80762	D	0	11	-0.79	0.2	0.63
80763	Α	1	30	0.97	0.28	0.75
80763	В	0	3	-0.7	0.57	0.65
80763	С	0	1	-0.37	0	0.7
80763	D	0	11	-0.97	0.23	0.54
80764	Α	1	20	0.76	0.32	0.73

80764	В	0	9	-0.89	0.43	0.68
80764	С	0	2	-0.98	0	0.41
80764	D	0	11	-0.73	0.27	0.71
80765	Α	1	8	-0.2	0.84	4.74
80765	В	0	12	-0.1	0.21	1.19
80765	С	0	11	-0.46	0.14	0.72
80765	D	0	13	-0.84	0.44	0.93
80766	Α	1	33	0.23	0.28	1.2
80766	В	0	1	-3.97	0	0.23
80766	С	0	5	-0.9	0.2	0.67
80766	D	0	5	-0.74	0.43	1
80767	Α	1	12	0.92	0.28	0.74
80767	В	0	7	-0.38	0.3	0.77
80767	С	0	6	-0.05	0.31	0.96
80767	D	0	19	-0.46	0.2	0.71
80768	Α	1	15	1.08	0.51	1.69
80768	В	0	10	0.11	0.29	1.13
80768	С	0	10	-0.68	0.27	0.52
80768	D	0	13	-0.18	0.19	0.75
80769	Α	1	15	0.52	0.26	1.08
80769	В	0	8	-0.26	0.26	0.82
80769	С	0	6	0.42	0.5	2.38
80769	D	0	17	-0.3	0.21	0.89
80770	Α	1	12	0.61	0.35	0.93
80770	В	0	6	0.03	0.3	1.22
80770	С	0	11	-0.49	0.44	0.99
80770	D	0	15	-1.11	0.45	0.74
80771	Α	1	15	1.68	0.64	1.94
80771	В	0	8	-0.01	0.26	0.74
80771	С	0	11	0.12	0.23	0.89
80771	D	0	12	-0.41	0.37	0.85
80772	Α	1	13	0.52	0.34	1.34
80772	В	0	14	0.08	0.25	1.2
80772	С	0	6	0.31	0.47	1.55
80772	D	0	13	-0.5	0.24	0.66
80773	Α	1	31	0.26	0.28	1.58

80773	В	0	3	-0.63	0.3	0.8
80773	С	0	2	-1.02	0.36	0.55
80773	D	0	8	-1.29	0.32	0.52
80774	Α	1	19	0.16	0.2	1.28
80774	В	0	8	-0.25	0.34	1.03
80774	С	0	9	0.02	0.38	1.54
80774	D	0	9	-0.3	0.34	1.18
80775	Α	1	15	0.78	0.27	1.14
80775	В	0	7	0.3	0.5	1.98
80775	С	0	5	-0.24	0.31	0.72
80775	D	0	17	-0.57	0.19	0.55
80776	Α	1	16	0.5	0.27	0.92
80776	В	0	3	-0.04	0.27	1.05
80776	С	0	7	-0.3	0.36	1.23
80776	D	0	16	-0.62	0.23	0.76
80777	Α	1	14	1.15	0.53	1
80777	В	0	8	-0.17	0.34	1.09
80777	С	0	6	-0.03	0.34	1.19
80777	D	0	16	-0.87	0.26	0.56
80778	Α	1	10	1.21	0.6	1
80778	В	0	6	0.06	0.24	0.92
80778	С	0	15	-0.21	0.35	1.03
80778	D	0	12	-0.69	0.22	0.5
80779	Α	1	14	0.97	0.41	0.89
80779	В	0	12	-0.29	0.21	0.85
80779	С	0	6	-0.44	0.24	0.64
80779	D	0	13	-0.25	0.21	0.85
80780	Α	1	19	1.01	0.32	0.96
80780	В	0	5	0.05	0.41	1.12
80780	С	0	1	-0.01	0	0.71
80780	D	0	16	-0.26	0.18	0.67
80781	Α	1	14	1.13	0.34	0.92
80781	В	0	8	0.23	0.24	1.03
80781	С	0	12	-0.14	0.2	0.76
80781	D	0	8	-0.63	0.43	0.58
80782	Α	1	16	1.33	0.32	0.77

80782	В	0	6	-0.25	0.42	0.76
80782	С	0	10	-0.34	0.19	0.56
80782	D	0	12	-0.24	0.34	0.96
80783	Α	1	11	1.16	0.37	0.82
80783	В	0	18	0.17	0.19	1.24
80783	С	0	6	-0.23	0.28	0.69
80783	D	0	11	-1.12	0.29	0.33
80784	Α	1	19	0.72	0.39	0.98
80784	В	0	3	-0.58	0.28	0.68
80784	С	0	5	-0.38	0.35	1.02
80784	D	0	18	-0.78	0.2	0.68
80785	Α	1	35	0.46	0.2	0.75
80785	В	0	4	-1.41	0.65	0.57
80785	С	0	5	-0.84	0.24	0.61
80785	D	0	3	-1.3	0.34	0.39
80786	Α	1	30	0.38	0.2	0.87
80786	В	0	8	-0.63	0.12	0.7
80786	С	0	5	-0.79	0.33	0.68
80786	D	0	4	-1.18	0.42	0.46
80787	Α	1	6	0.73	0.36	0.74
80787	В	0	10	-0.07	0.21	1.07
80787	С	0	15	-0.22	0.21	1.08
80787	D	0	13	-0.99	0.43	0.65
80788	Α	1	17	1.66	0.55	0.7
80788	В	0	12	-0.26	0.25	0.93
80788	С	0	6	-0.48	0.33	0.68
80788	D	0	12	-1.3	0.45	0.43
80789	Α	1	9	1.05	0.68	1.41
80789	В	0	11	-0.12	0.26	0.87
80789	С	0	12	0.28	0.39	1.84
80789	D	0	13	-1.04	0.28	0.35
80790	Α	1	11	1.66	0.76	1.24
80790	В	0	12	0.24	0.18	1.03
80790	С	0	6	0.02	0.12	0.71
80790	D	0	16	-0.52	0.25	0.55
80791	Α	1	13	0.77	0.43	0.98

80791	В	0	8	0.05	0.32	1.2
80791	С	0	14	-0.09	0.28	1.15
80791	D	0	10	-0.93	0.45	0.53
80792	Α	1	15	0.62	0.54	4.51
80792	В	0	3	-0.88	0.45	0.37
80792	С	0	15	-0.12	0.29	0.97
80792	D	0	13	-0.22	0.21	0.88
80793	Α	1	34	0.33	0.24	1.3
80793	В	0	3	-0.49	0.12	0.77
80793	С	0	3	-0.74	0.68	0.86
80793	D	0	4	-0.79	0.42	0.75
80794	Α	1	21	0.92	0.31	0.89
80794	В	0	10	0.2	0.55	1.76
80794	С	0	6	0	0.43	1.27
80794	D	0	5	-0.91	0.27	0.36
80795	Α	1	17	0.88	0.35	1.5
80795	В	0	9	0.19	0.22	1.12
80795	С	0	6	-0.26	0.53	1.12
80795	D	0	13	-1.11	0.51	0.6
80796	Α	1	15	0.41	0.28	1.09
80796	В	0	4	-0.08	0.48	1.22
80796	С	0	10	-0.42	0.37	1.07
80796	D	0	18	-0.5	0.43	1.49
80797	Α	1	22	0.18	0.24	1.18
80797	В	0	5	-0.07	0.63	2.22
80797	С	0	6	-0.86	0.46	0.81
80797	D	0	13	-1.59	0.67	1.26
80798	Α	1	6	3.6	1.16	1.75
80798	В	0	15	0.04	0.2	0.71
80798	С	0	3	-0.06	0.19	0.46
80798	D	0	23	-1.11	0.37	0.48
80799	Α	1	13	0.97	0.23	0.79
80799	В	0	10	-0.01	0.33	0.97
80799	С	0	5	0.25	0.43	1.19
80799	D	0	16	-0.46	0.4	0.71
80800	Α	1	11	0.26	0.23	1.22

80800	В	0	6	0.26	0.55	2.69
80800	С	0	8	-0.21	0.29	0.9
80800	D	0	15	-0.12	0.28	1.21
80801	Α	1	19	0.6	0.38	1.34
80801	В	0	10	-0.6	0.52	0.84
80801	С	0	5	0.1	0.4	1.44
80801	D	0	9	-0.17	0.22	0.88
80802	Α	1	17	0.54	0.26	1.23
80802	В	0	9	-0.13	0.33	1.09
80802	С	0	6	-0.93	0.66	0.63
80802	D	0	14	-0.1	0.31	1.26
80803	Α	1	11	0.68	0.71	2.93
80803	В	0	15	-0.4	0.35	0.81
80803	С	0	5	0.33	0.39	0.97
80803	D	0	16	0.75	0.38	1.84
80804	Α	1	15	0.62	0.37	1.01
80804	В	0	10	0	0.29	1.33
80804	С	0	9	-0.23	0.27	0.92
80804	D	0	12	-0.82	0.53	0.96
80805	Α	1	13	1.06	0.52	1.33
80805	В	0	7	0.52	0.39	1.7
80805	С	0	9	0.55	0.36	1.82
80805	D	0	16	-0.55	0.22	0.5
80806	Α	1	18	1.16	0.36	1.29
80806	В	0	7	0.23	0.4	1.09
80806	С	0	4	1.23	1.4	5.3
80806	D	0	17	-0.09	0.23	0.76
80807	Α	1	10	0.77	0.63	1.73
80807	В	0	6	-0.5	0.45	0.61
80807	С	0	8	-0.06	0.44	1.32
80807	D	0	20	0.17	0.23	1.28
80808	Α	1	13	-0.08	0.3	1.7
80808	В	0	2	-0.37	0.04	0.8
80808	С	0	12	-0.11	0.29	1.77
80808	D	0	17	-0.92	0.42	0.87
80809	Α	1	10	0.3	0.38	1.03

80809	В	0	11	-0.48	0.27	1.55
80809	С	0	9	-0.85	0.34	0.81
80809	D	0	16	-1.22	0.42	0.92
80810	Α	1	25	0.9	0.33	0.86
80810	В	0	7	0.36	0.58	3.82
80810	С	0	5	-0.75	0.17	0.48
80810	D	0	9	-1.63	0.67	0.43
80811	Α	1	29	0.31	0.26	1.28
80811	В	0	8	-0.08	0.3	1.51
80811	С	0	4	-0.03	0.67	2.36
80811	D	0	5	-2.72	0.96	0.3
80812	Α	1	27	0.59	0.28	1.09
80812	В	0	5	0	0.24	1.12
80812	С	0	6	-0.74	0.32	0.62
80812	D	0	9	-0.95	0.58	0.76
80813	Α	1	23	0.53	0.29	0.91
80813	В	0	4	-1.36	0.66	0.49
80813	С	0	9	-0.05	0.42	2.99
80813	D	0	8	-1.43	0.68	0.69
80814	Α	1	23	0.89	0.3	1.06
80814	В	0	3	0.55	0.67	2.19
80814	С	0	8	0.01	0.31	1.03
80814	D	0	12	-1.15	0.54	0.54
80815	Α	1	21	0.86	0.22	0.87
80815	В	0	3	-0.44	0.34	0.51
80815	С	0	7	0.13	0.61	2.32
80815	D	0	14	-0.35	0.41	0.83
80816	Α	1	17	0.3	0.29	1.73
80816	В	0	6	0.05	0.52	1.79
80816	С	0	11	0.26	0.27	2.02
80816	D	0	13	-1.27	0.45	0.63
80817	Α	1	24	0.64	0.34	0.85
80817	В	0	4	-0.86	0.44	0.68
80817	С	0	8	-0.27	0.55	3.22
80817	D	0	10	-1.42	0.53	0.71
80818	Α	1	26	0.47	0.27	0.88

80818	В	0	5	-0.71	0.32	0.76
80818	С	0	5	-0.07	0.39	1.62
80818	D	0	8	-2.59	0.7	0.39
80819	Α	1	24	0.04	0.19	0.79
80819	В	0	2	-1.38	0.39	0.49
80819	С	0	6	-0.91	0.24	0.83
80819	D	0	14	-1.73	0.45	0.74
80820	Α	1	28	0.19	0.19	1.03
80820	В	0	8	-0.35	0.19	1.02
80820	С	0	4	0.1	0.32	1.66
80820	D	0	7	-1.51	0.4	0.44
80821	Α	1	8	0.77	0.39	1.14
80821	В	0	7	0.49	0.29	1.26
80821	С	0	16	-0.23	0.33	1.06
80821	D	0	14	0.07	0.22	1.01
80822	Α	1	874	0.71	0.05	0.93
80822	В	0	328	-0.39	0.05	1.04
80822	С	0	260	-0.45	0.05	0.83
80822	D	0	438	-0.93	0.07	0.75
80823	Α	1	19	1.03	0.36	0.81
80823	В	0	6	-0.08	0.32	1.06
80823	С	0	8	-0.39	0.28	0.83
80823	D	0	13	-1.28	0.46	0.61
80824	Α	1	23	1	0.32	0.81
80824	В	0	9	-0.44	0.15	0.66
80824	С	0	3	-0.43	0.22	0.63
80824	D	0	11	-1.26	0.51	0.54
80825	Α	1	15	0.41	0.28	1.22
80825	В	0	9	0.11	0.31	1.49
80825	С	0	3	0.19	0.4	1.23
80825	D	0	19	-0.72	0.42	0.91
80826	Α	1	12	0.53	0.57	1.75
80826	В	0	11	0.27	0.3	2.02
80826	С	0	7	-1.03	0.31	0.46
80826	D	0	17	-0.89	0.44	0.91
80827	Α	1	19	0.68	0.24	0.82

80827	В	0	12	-0.53	0.23	0.75
80827	С	0	4	-0.31	0.39	0.86
80827	D	0	9	-0.78	0.48	0.74
80828	Α	1	31	0.52	0.16	0.79
80828	В	0	4	-0.73	0.24	0.56
80828	С	0	4	-0.49	0.23	0.71
80828	D	0	8	-1.2	0.61	0.7
80829	Α	1	18	1.24	0.36	0.72
80829	В	0	10	0.15	0.18	1.06
80829	С	0	8	-0.28	0.29	0.86
80829	D	0	10	-1.88	0.51	0.29
80830	Α	1	15	0.56	0.28	0.9
80830	В	0	6	-0.69	0.2	0.53
80830	С	0	11	0.01	0.58	3.78
80830	D	0	12	-1.06	0.64	1.04
80831	Α	1	11	0.72	0.5	1.79
80831	В	0	5	0.38	0.4	1.54
80831	С	0	14	-0.34	0.48	1.32
80831	D	0	15	-1.09	0.37	0.47
80832	Α	1	14	0.56	0.29	0.91
80832	В	0	13	-0.17	0.31	1.27
80832	С	0	7	-0.45	0.42	1.07
80832	D	0	12	-1.03	0.59	0.75
80833	Α	1	21	0.1	0.2	1.08
80833	В	0	10	-0.18	0.28	1.41
80833	С	0	6	0.32	0.99	7.06
80833	D	0	10	-1.89	0.55	0.54
80834	Α	1	35	0.34	0.11	0.8
80834	В	0	2	-1.18	1.43	0.74
80834	С	0	5	-0.79	0.36	0.63
80834	D	0	5	-0.92	0.84	0.86
80835	Α	1	21	0.44	0.34	1.16
80835	В	0	5	-0.26	0.3	1.01
80835	С	0	9	-0.56	0.24	0.8
80835	D	0	10	-1.36	0.89	1.34
80836	Α	1	20	0.99	0.29	0.82

80836	В	0	3	-0.43	0.45	0.56
80836	С	0	12	0.23	0.33	1.78
80836	D	0	10	-1.13	0.69	0.57
80837	Α	1	16	0.62	0.25	0.77
80837	В	0	5	0.28	0.49	2.36
80837	С	0	9	-0.83	0.33	0.65
80837	D	0	12	-1.2	0.51	0.7
80838	Α	1	13	1.16	0.27	0.56
80838	В	0	11	0.06	0.36	2
80838	С	0	11	-0.26	0.22	0.75
80838	D	0	10	-1.36	0.4	0.32
80839	Α	1	17	1.17	0.38	1.25
80839	В	0	9	0.53	0.39	2.17
80839	С	0	11	-0.51	0.16	0.45
80839	D	0	8	-0.64	0.76	1
80840	Α	1	23	0.65	0.28	0.72
80840	В	0	4	-0.86	0.16	0.52
80840	С	0	6	-0.66	0.23	0.68
80840	D	0	11	-1.09	0.47	0.77
80841	Α	1	21	0.76	0.27	0.96
80841	В	0	10	-0.4	0.34	1.21
80841	С	0	4	-0.76	0.2	0.48
80841	D	0	11	-1.3	0.59	0.71
80842	Α	1	16	0.95	0.46	1.44
80842	В	0	10	-0.03	0.21	0.91
80842	С	0	10	-0.11	0.39	1.29
80842	D	0	8	-0.69	0.37	0.55
80843	Α	1	11	-0.16	0.29	1.47
80843	В	0	17	0.1	0.22	1.72
80843	С	0	8	-0.75	0.43	0.88
80843	D	0	11	-1	0.33	0.67
80844	Α	1	15	0.27	0.47	2.11
80844	В	0	8	-0.13	0.3	1.25
80844	С	0	10	-0.67	0.18	0.63
80844	D	0	12	-0.19	0.19	1.04
80845	Α	1	12	0.72	0.56	1.9

80845	В	0	13	0.01	0.21	1.13
80845	С	0	7	-0.12	0.21	8.0
80845	D	0	13	-0.54	0.41	1.23
80846	Α	1	13	1.14	0.54	0.84
80846	В	0	9	0.06	0.51	2.69
80846	С	0	12	-0.46	0.23	0.72
80846	D	0	10	-0.8	0.57	0.82
80847	Α	1	19	0.68	0.36	1.31
80847	В	0	14	-0.23	0.15	0.89
80847	С	0	5	-0.73	0.46	0.77
80847	D	0	8	-0.57	0.25	0.65
80848	Α	1	17	0.51	0.26	0.98
80848	В	0	17	-0.26	0.17	0.9
80848	С	0	5	-0.36	0.47	0.96
80848	D	0	4	-1.31	1.33	0.98
80849	Α	1	12	-0.29	0.25	1.58
80849	В	0	12	-0.6	0.29	0.95
80849	С	0	8	0.09	0.29	1.82
80849	D	0	13	-0.17	0.28	1.48
80850	Α	1	17	0.47	0.4	1.75
80850	В	0	17	-0.08	0.2	1.14
80850	С	0	5	0.74	0.54	2.92
80850	D	0	6	-0.66	0.62	0.92
80851	Α	1	24	0.55	0.22	0.99
80851	В	0	7	-0.12	0.4	1.45
80851	С	0	8	-0.51	0.19	0.64
80851	D	0	7	-0.58	0.64	1.33
80852	Α	1	22	0.35	0.21	0.84
80852	В	0	7	-0.75	0.49	1.06
80852	С	0	11	-0.61	0.12	0.74
80852	D	0	3	-2.07	0.41	0.2
80853	Α	1	28	0.32	0.28	1.25
80853	В	0	5	0.03	0.27	1.55
80853	С	0	6	-1.11	0.15	0.45
80853	D	0	4	-0.91	0.32	0.6
80854	Α	1	19	0.14	0.27	1.53

80854	В	0	16	0.11	0.42	3.22
80854	С	0	5	-0.67	0.14	0.57
80854	D	0	3	-1.2	0.07	0.32
80855	Α	1	38	-0.03	0.18	1.03
80855	В	0	2	-0.72	0.48	0.87
80855	С	0	5	-1.02	0.38	0.79
80855	D	0	3	-0.49	0.8	1.75
80856	Α	1	25	0.48	0.26	0.82
80856	В	0	3	0.01	0.12	1.21
80856	С	0	9	-0.25	0.3	1.24
80856	D	0	9	-2.03	0.69	0.59
80857	Α	1	26	0.31	0.13	0.78
80857	В	0	10	-0.27	0.29	1.56
80857	С	0	5	-0.81	0.25	0.61
80857	D	0	5	-2.23	0.82	0.31
80858	Α	1	28	0.69	0.31	0.99
80858	В	0	10	-0.48	0.22	0.82
80858	С	0	8	-0.98	0.2	0.47
80858	D	0	2	-0.16	0.29	0.98
80859	Α	1	24	0.56	0.31	0.81
80859	В	0	4	-0.82	0.51	0.85
80859	С	0	4	-1.05	0.61	0.81
80859	D	0	11	-1.21	0.33	0.7
80860	Α	1	26	0.75	0.32	0.84
80860	В	0	7	-0.64	0.11	0.6
80860	С	0	4	-0.22	0.28	0.98
80860	D	0	7	-1.32	0.44	0.48
80861	Α	1	35	0.09	0.2	0.73
80861	В	0	2	-1.12	0.39	0.74
80861	С	0	1	-0.78	0	0.96
80861	D	0	6	-2.99	0.82	0.42
80862	Α	1	34	0.44	0.22	0.88
80862	В	0	4	-0.87	0.29	0.58
80862	С	0	7	-0.76	0.26	0.69
80862	D	0	0	0	0	0
80863	Α	1	26	0.03	0.17	0.73

80863	В	0	7	-1.17	0.68	1.11
80863	С	0	9	-1.36	0.27	0.59
80863	D	0	4	-2.21	0.51	0.32
80864	Α	1	29	0.25	0.26	1.05
80864	В	0	7	-0.72	0.31	1.07
80864	С	0	7	-1.97	0.6	0.47
80864	D	0	3	-1.36	1.24	1.61
80865	Α	1	32	0.01	0.18	0.86
80865	В	0	4	-0.54	0.36	1.18
80865	С	0	8	-1.16	0.21	0.63
80865	D	0	2	-2.36	0.43	0.19
80866	Α	1	29	0.23	0.19	1.08
80866	В	0	2	-0.48	0.23	0.68
80866	С	0	12	0.18	0.33	2.53
80866	D	0	3	-1.21	0.45	0.38
80867	Α	1	33	0.4	0.22	0.8
80867	В	0	5	-0.63	0.31	0.84
80867	С	0	5	-0.94	0.22	0.57
80867	D	0	3	-2.35	1.14	0.35
80868	Α	1	29	0.18	0.16	0.84
80868	В	0	6	-0.59	0.68	1.4
80868	С	0	5	-1.55	0.92	0.77
80868	D	0	4	-1.43	0.59	0.46
80869	Α	1	27	-0.06	0.23	1.43
80869	В	0	5	-0.06	0.34	1.71
80869	С	0	8	-0.51	0.25	1.07
80869	D	0	4	-1.72	0.77	0.53
80870	Α	1	36	0.47	0.23	0.78
80870	В	0	5	-1.11	0.37	0.61
80870	С	0	5	-1.3	0.31	0.46
80870	D	0	1	-2.98	0	0.09
80871	Α	1	16	0.57	0.31	0.99
80871	В	0	11	-0.44	0.3	1.04
80871	С	0	6	-0.59	0.51	0.88
80871	D	0	13	-0.85	0.55	1.53
80872	Α	1	27	0.11	0.2	1.01

80872	В	0	2	-0.09	0.09	1.22
80872	С	0	9	0	0.67	5.21
80872	D	0	8	-1.17	0.47	0.78
80873	Α	1	33	0.66	0.15	0.78
80873	В	0	4	0.19	0.58	1.91
80873	С	0	5	-0.24	0.48	1.23
80873	D	0	5	-1.62	0.74	0.74
80874	Α	1	26	0.63	0.3	1.03
80874	В	0	7	-0.74	0.08	0.57
80874	С	0	9	-0.64	0.29	0.89
80874	D	0	3	-1.51	0.72	0.42
80875	Α	1	12	0.99	0.44	1.32
80875	В	0	4	0.39	0.37	1.2
80875	С	0	19	0.36	0.22	1.47
80875	D	0	8	-2.06	0.57	0.16
80876	Α	1	34	0.65	0.27	0.97
80876	В	0	4	0.29	0.53	2.2
80876	С	0	4	0.03	0.44	1.56
80876	D	0	5	-1.95	0.59	0.39
80877	Α	1	23	0.66	0.31	1.03
80877	В	0	3	-0.62	0.37	0.65
80877	С	0	10	-0.7	0.18	0.62
80877	D	0	11	-0.49	0.49	2.28
80878	Α	1	16	0.15	0.27	1.05
80878	В	0	15	-0.5	0.2	1.03
80878	С	0	10	-0.32	0.39	1.9
80878	D	0	6	-1.99	0.7	0.39
80879	Α	1	25	0.27	0.27	0.79
80879	В	0	5	-0.65	0.18	0.82
80879	С	0	9	-1.11	0.43	1.13
80879	D	0	7	-1.38	0.75	0.87
80880	Α	1	22	0.99	0.36	0.68
80880	В	0	4	-0.55	0.26	0.72
80880	С	0	8	-0.26	0.43	1.7
80880	D	0	10	-1.8	0.43	0.35
80881	Α	1	29	0.43	0.2	0.93

80881	В	0	7	-0.92	0.21	0.49
80881	С	0	8	-0.28	0.19	0.94
80881	D	0	4	-0.77	0.85	1.3
80882	Α	1	25	0.47	0.27	0.78
80882	В	0	6	-0.79	0.18	0.71
80882	С	0	4	-0.54	0.53	1.17
80882	D	0	13	-1.89	0.48	0.49
80883	Α	1	26	0.32	0.23	0.92
80883	В	0	5	-0.92	0.37	0.7
80883	С	0	11	-0.59	0.17	0.87
80883	D	0	2	-2.35	0.63	0.16
80884	Α	1	14	0.6	0.3	1.13
80884	В	0	25	0.08	0.36	2.24
80884	С	0	4	-0.89	0.45	0.41
80884	D	0	3	-2.86	1	0.09
80885	Α	1	27	0.21	0.18	0.91
80885	В	0	2	-0.48	0.87	1.23
80885	С	0	9	-0.56	0.34	1.49
80885	D	0	7	-2.07	0.62	0.41
80886	Α	1	32	0.81	0.26	0.89
80886	В	0	2	-0.39	0.35	0.62
80886	С	0	5	-0.3	0.36	0.8
80886	D	0	2	-0.79	1.35	0.8
80887	Α	1	28	0.27	0.23	1.02
80887	В	0	11	-0.6	0.16	0.85
80887	С	0	2	-0.62	0.24	0.77
80887	D	0	4	-1.7	0.42	0.34
88808	Α	1	24	0.25	0.21	1.33
88808	В	0	9	0.05	0.24	1.36
88808	С	0	7	0.15	0.58	2.97
88808	D	0	5	-1.94	0.66	0.29
80889	Α	1	26	0.12	0.19	0.84
80889	В	0	7	-0.37	0.38	1.87
80889	С	0	6	-0.05	0.54	3.33
80889	D	0	8	-2.5	0.57	0.26
80890	Α	1	31	0.33	0.28	1.25

80890	В	0	7	-0.51	0.34	1.16
80890	С	0	2	-1.05	0.31	0.49
80890	D	0	3	-0.62	0.38	0.82
80891	Α	1	39	0.48	0.21	0.76
80891	В	0	4	-0.56	0.6	1.35
80891	С	0	2	-2.74	0.41	0.11
80891	D	0	2	-1.4	0.31	0.36
80892	Α	1	33	0.45	0.22	0.87
80892	В	0	6	-0.77	0.2	0.62
80892	С	0	4	-1.04	0.57	0.63
80892	D	0	1	-1.34	0	0.32
80893	Α	1	36	0.35	0.23	1.08
80893	В	0	5	-0.42	0.43	1.38
80893	С	0	1	-1.17	0	0.43
80893	D	0	3	-1.83	0.44	0.27
80894	Α	1	31	0.86	0.2	0.76
80894	В	0	11	-0.88	0.16	0.43
80894	С	0	4	0.19	0.77	2.83
80894	D	0	2	-0.82	1.06	0.64
80895	Α	1	30	0.17	0.16	0.87
80895	В	0	0	0	0	0
80895	С	0	9	-0.78	0.35	0.97
80895	D	0	3	-1.39	0.9	0.58
80896	Α	1	22	0.59	0.23	0.82
80896	В	0	4	-0.5	0.51	0.88
80896	С	0	10	-0.33	0.38	1.58
80896	D	0	10	-1.48	0.6	0.79
80897	Α	1	26	0.65	0.29	1.07
80897	В	0	3	0.62	0.24	2.27
80897	С	0	10	-0.78	0.28	0.79
80897	D	0	5	-1.86	0.42	0.25
80898	Α	1	19	0.53	0.34	1.12
80898	В	0	9	0.01	0.36	1.56
80898	С	0	12	-0.31	0.47	2.31
80898	D	0	6	-0.92	0.41	0.53
80899	Α	1	22	1.19	0.33	0.65

80899	В	0	8	-0.48	0.21	0.68
80899	С	0	6	0.3	1	5.35
80899	D	0	7	-1.79	0.56	0.27
80900	Α	1	23	0.53	0.27	0.87
80900	В	0	5	-0.43	0.48	1.04
80900	С	0	6	-0.29	0.2	0.88
80900	D	0	12	-0.91	0.43	1.14
80901	Α	1	24	0.69	0.3	1.06
80901	В	0	11	-0.43	0.49	1.2
80901	С	0	5	-0.01	0.48	1.69
80901	D	0	6	-0.98	0.31	0.45
80902	Α	1	27	0.72	0.26	0.88
80902	В	0	8	-0.01	0.27	1.22
80902	С	0	7	-0.62	0.25	0.6
80902	D	0	6	-1.04	0.39	0.46
80903	Α	1	37	0.12	0.17	0.97
80903	В	0	2	-0.37	0.23	1.02
80903	С	0	0	0	0	0
80903	D	0	8	-1.24	0.66	0.88
80904	Α	1	617	0.84	0.06	1.12
80904	В	0	481	-0.08	0.04	1.21
80904	С	0	297	-0.21	0.05	1.06
80904	D	0	510	-0.87	0.06	0.67
80905	Α	1	14	1.17	0.39	1.11
80905	В	0	11	-0.32	0.29	0.78
80905	С	0	9	-0.16	0.14	0.7
80905	D	0	10	-0.62	0.29	0.56
80906	Α	1	18	0.66	0.3	1.1
80906	В	0	9	-0.09	0.25	1.07
80906	С	0	15	-0.18	0.22	1.16
80906	D	0	5	-2.52	0.78	0.19
80907	Α	1	19	-0.02	0.27	1.85
80907	В	0	11	0.47	0.5	2.92
80907	С	0	7	-0.54	0.37	0.98
80907	D	0	7	-0.49	0.33	0.85
80908	Α	1	36	0.22	0.22	1.07

80908	В	0	2	-0.84	0.22	0.65
80908	С	0	5	-1.11	0.46	0.68
80908	D	0	2	-3.14	2.29	0.34
80909	Α	1	31	0.34	0.3	1.53
80909	В	0	4	-0.02	0.37	1.44
80909	С	0	6	-0.57	0.05	0.71
80909	D	0	4	-0.96	0.45	0.63
80910	Α	1	17	0.79	0.36	1.14
80910	В	0	7	-0.12	0.26	0.83
80910	С	0	14	0.2	0.22	1.3
80910	D	0	8	-0.52	0.19	0.54
80911	Α	1	18	0.75	0.39	1.15
80911	В	0	1	-0.38	0	0.68
80911	С	0	6	-0.26	0.14	0.8
80911	D	0	20	-0.57	0.2	0.75
80912	Α	1	17	1.05	0.37	0.79
80912	В	0	6	-0.58	0.49	1.03
80912	С	0	13	-0.45	0.36	0.97
80912	D	0	8	-1.11	0.35	0.44
80913	Α	1	16	0.89	0.42	0.76
80913	В	0	3	0.05	0.61	1.54
80913	С	0	11	-0.33	0.26	1.04
80913	D	0	16	-0.99	0.42	0.81
80914	Α	1	23	0.51	0.33	1.32
80914	В	0	8	-0.46	0.3	0.86
80914	С	0	11	-0.01	0.2	1.18
80914	D	0	4	-1.84	1.49	1.08
80915	Α	1	16	1.2	0.44	0.71
80915	В	0	9	-0.66	0.25	0.67
80915	С	0	9	-0.63	0.29	0.82
80915	D	0	11	-1.41	0.45	0.53
80916	Α	1	25	0.42	0.33	2.76
80916	В	0	9	-0.03	0.09	0.98
80916	С	0	7	-0.34	0.15	0.73
80916	D	0	5	-1.07	0.18	0.36
80917	Α	1	24	0.52	0.21	0.9

80917	В	0	7	-0.5	0.19	0.75
80917	С	0	5	-0.69	0.17	0.59
80917	D	0	11	-1.13	0.53	0.77
80918	Α	1	9	0.16	0.36	1.18
80918	В	0	6	-0.73	0.34	0.73
80918	С	0	13	-0.18	0.14	1.07
80918	D	0	14	-0.73	0.32	0.89
80919	Α	1	13	0.66	0.41	1.69
80919	В	0	8	-0.18	0.41	1.14
80919	С	0	12	0.16	0.3	1.61
80919	D	0	14	-0.99	0.46	0.62
80920	Α	1	22	0.51	0.34	1.27
80920	В	0	6	-0.27	0.21	0.99
80920	С	0	4	-0.86	0.27	0.55
80920	D	0	13	-0.77	0.19	0.66
80921	Α	1	14	0.78	0.5	2.37
80921	В	0	9	-0.01	0.29	1.18
80921	С	0	6	-0.58	0.49	0.99
80921	D	0	16	-0.9	0.42	0.7
80922	Α	1	15	0.85	0.39	0.77
80922	В	0	8	-0.36	0.28	0.9
80922	С	0	6	-0.77	0.41	0.62
80922	D	0	13	-1.09	0.52	0.86
80923	Α	1	33	0.45	0.29	1.25
80923	В	0	5	-0.33	0.25	1.02
80923	С	0	6	-0.34	0.16	0.92
80923	D	0	2	-2.07	0.68	0.2
80924	Α	1	15	0.34	0.18	0.94
80924	В	0	7	-0.52	0.25	0.67
80924	С	0	9	0.05	0.38	1.56
80924	D	0	11	-0.33	0.29	0.9
80925	Α	1	10	0.95	0.82	1.31
80925	В	0	12	-0.38	0.27	1.18
80925	С	0	12	-0.8	0.43	0.76
80925	D	0	10	-1.33	0.67	0.83
80926	Α	1	14	1.44	0.49	0.92

80926	В	0	4	0.15	0.41	0.91
80926	С	0	9	0.14	0.6	1.99
80926	D	0	18	-0.83	0.38	0.62
80927	Α	1	20	1.17	0.3	0.76
80927	В	0	11	-0.3	0.28	0.82
80927	С	0	6	-0.17	0.35	0.82
80927	D	0	5	-1.27	1.07	0.55
80928	Α	1	12	1.37	0.5	0.79
80928	В	0	9	-0.59	0.25	0.62
80928	С	0	13	-0.33	0.15	0.74
80928	D	0	11	-1.13	0.49	0.55
80929	Α	1	15	0.45	0.25	0.96
80929	В	0	9	-0.41	0.31	1.14
80929	С	0	9	0.25	0.25	1.66
80929	D	0	10	-1.53	0.57	0.49
80930	Α	1	21	0.74	0.29	0.99
80930	В	0	7	-0.42	0.26	0.64
80930	С	0	10	0.05	0.22	0.98
80930	D	0	7	-0.14	0.44	1.17
80931	Α	1	22	0.98	0.32	0.9
80931	В	0	9	-0.29	0.21	0.7
80931	С	0	4	-0.32	0.45	0.78
80931	D	0	10	-0.22	0.26	0.84
80932	Α	1	17	1.12	0.48	1.12
80932	В	0	6	-0.33	0.1	0.66
80932	С	0	7	-0.13	0.25	0.94
80932	D	0	13	-0.9	0.41	0.62
80933	Α	1	16	0.7	0.36	1.06
80933	В	0	14	-0.02	0.29	1.59
80933	С	0	3	0.36	0.31	1.23
80933	D	0	8	-0.64	0.75	0.98
80934	Α	1	13	0.3	0.37	1.51
80934	В	0	13	-0.56	0.32	0.97
80934	С	0	8	-0.33	0.3	0.99
80934	D	0	12	-0.47	0.29	1.2
80935	Α	1	32	0.13	0.19	0.96

80935	В	0	4	-0.3	0.74	2.24
80935	С	0	4	-0.07	0.64	2.78
80935	D	0	4	-2.48	1	0.27
80936	Α	1	22	0.24	0.21	1.06
80936	В	0	13	-0.06	0.19	1.43
80936	С	0	3	-1.01	0.36	0.48
80936	D	0	4	-3.41	1.24	0.28
80937	Α	1	19	0.65	0.24	0.74
80937	В	0	13	-0.25	0.29	1.39
80937	С	0	12	-1.04	0.29	0.5
80937	D	0	2	-0.2	0.24	0.85
80938	Α	1	9	0.47	0.9	3.83
80938	В	0	9	-0.36	0.38	1.02
80938	С	0	7	0.01	0.19	0.98
80938	D	0	17	-0.84	0.44	1.09
80939	Α	1	11	1.35	0.47	0.59
80939	В	0	10	-0.63	0.27	0.56
80939	С	0	9	-0.41	0.62	1.09
80939	D	0	12	-0.55	0.35	0.79
80940	Α	1	17	0.63	0.48	1.25
80940	В	0	4	-1.53	1.15	0.6
80940	С	0	9	-0.22	0.24	1.1
80940	D	0	13	-0.68	0.45	0.98
80941	Α	1	25	0.66	0.41	1.53
80941	В	0	6	-0.3	0.3	1.15
80941	С	0	5	-0.7	0.21	0.67
80941	D	0	6	-1.96	0.7	0.4
80942	Α	1	11	1.05	0.55	1.31
80942	В	0	13	0.08	0.28	1.35
80942	С	0	6	-0.55	0.34	0.58
80942	D	0	15	-0.41	0.17	0.63
80943	Α	1	7	0.83	0.39	0.77
80943	В	0	7	0.12	0.42	1.59
80943	С	0	13	-0.53	0.12	0.55
80943	D	0	20	-0.97	0.45	1.2
80944	Α	1	10	0.21	0.43	1.72

80944	В	0	8	-0.67	0.25	0.54
80944	С	0	9	0.1	0.36	1.53
80944	D	0	18	-0.77	0.54	1.86
80945	Α	1	11	2.03	0.74	1.06
80945	В	0	12	-0.82	0.33	0.51
80945	С	0	13	-0.27	0.2	0.61
80945	D	0	8	0.31	0.3	1.23
80946	Α	1	13	0.42	0.33	1.16
80946	В	0	9	-0.42	0.29	0.92
80946	С	0	9	-0.28	0.24	0.9
80946	D	0	14	-0.63	0.48	1.63
80947	Α	1	27	0.62	0.28	0.75
80947	В	0	4	-0.78	0.35	0.79
80947	С	0	7	-0.9	0.15	0.6
80947	D	0	4	-2.72	0.77	0.17
80948	Α	1	15	1.02	0.55	1.17
80948	В	0	9	-0.88	0.37	0.63
80948	С	0	4	-0.6	0.57	0.86
80948	D	0	14	-0.7	0.54	1.04
80949	Α	1	12	0.76	0.58	1.7
80949	В	0	7	-0.35	0.31	0.83
80949	С	0	25	-0.31	0.2	0.94
80949	D	0	2	-1.1	0.24	0.3
80950	Α	1	16	1.14	0.58	1.24
80950	В	0	8	-0.32	0.21	0.75
80950	С	0	8	-0.43	0.25	0.71
80950	D	0	11	-0.19	0.42	1.25
80951	Α	1	23	0.61	0.31	0.92
80951	В	0	12	-0.24	0.22	1.1
80951	С	0	4	-0.55	0.52	0.84
80951	D	0	3	-3.16	1.1	0.12
80952	Α	1	36	0.19	0.2	1.09
80952	В	0	4	-0.35	0.24	1.06
80952	С	0	4	-0.26	0.46	1.48
80952	D	0	2	-2.1	1.21	0.31
80953	Α	1	32	0.57	0.3	0.85

80953	В	0	3	-0.51	0.57	1.04
80953	С	0	6	-0.53	0.51	1.36
80953	D	0	5	-1.84	0.56	0.37
80954	Α	1	27	0.75	0.29	1.16
80954	В	0	11	-0.44	0.35	0.96
80954	С	0	2	-0.12	0.43	0.89
80954	D	0	5	-1.16	1.1	0.8
80955	Α	1	31	0.15	0.17	1.05
80955	В	0	7	0.16	0.33	1.97
80955	С	0	2	-1.31	0.11	0.34
80955	D	0	3	-1.59	0.81	0.41
80956	Α	1	37	0.41	0.25	1.25
80956	В	0	4	-0.51	0.32	1.08
80956	С	0	1	-0.44	0	0.99
80956	D	0	3	-3.89	0.94	0.13
80957	Α	1	38	0.37	0.24	1.06
80957	В	0	2	-1.16	0.35	0.46
80957	С	0	2	-0.5	0.23	0.86
80957	D	0	2	-1.39	0.58	0.4
80958	Α	1	37	0.46	0.28	0.95
80958	В	0	3	-1.47	0.27	0.36
80958	С	0	3	-0.99	0.66	0.84
80958	D	0	2	-0.55	0.28	0.88
80959	Α	1	36	0.09	0.17	1.04
80959	В	0	3	0.01	0.46	1.99
80959	С	0	2	-0.14	0.72	1.73
80959	D	0	4	-2.67	1.06	0.35
80960	Α	1	37	0.35	0.22	0.85
80960	В	0	4	-0.73	0.45	0.89
80960	С	0	3	-1.33	0.74	0.61
80960	D	0	2	-3.08	2.27	0.35
80961	Α	1	27	0.46	0.26	0.72
80961	В	0	4	-1.24	0.33	0.54
80961	С	0	9	-1.19	0.38	0.74
80961	D	0	5	-2.3	0.89	0.42
80962	Α	1	40	0.25	0.14	0.61

80962	В	0	1	-1.48	0	0.4
80962	С	0	3	-1.05	0.27	0.66
80962	D	0	4	-4.53	0.87	0.11
80963	Α	1	37	0.48	0.3	0.98
80963	В	0	0	0	0	0
80963	С	0	4	-0.24	0.6	2.54
80963	D	0	4	-3.81	1	0.19
80964	Α	1	34	0.5	0.2	0.77
80964	В	0	3	-1.11	0.46	0.55
80964	С	0	3	-1.04	0.68	0.68
80964	D	0	5	-1.5	0.82	0.99
80965	Α	1	28	0.56	0.31	1.24
80965	В	0	8	-0.22	0.35	1.53
80965	С	0	1	-0.56	0	0.73
80965	D	0	5	-2.42	0.85	0.27
80966	Α	1	32	0.54	0.22	0.8
80966	В	0	3	-0.93	0.45	0.57
80966	С	0	5	-0.86	0.34	0.61
80966	D	0	5	-1.45	1.02	0.69
80967	Α	1	32	0.41	0.2	0.87
80967	В	0	4	-1.34	1.22	1.06
80967	С	0	4	-1.38	0.29	0.41
80967	D	0	5	-2	0.87	0.41
80968	Α	1	32	0.64	0.26	0.92
80968	В	0	5	-0.77	0.2	0.49
80968	С	0	6	-0.35	0.45	1.27
80968	D	0	3	0.16	0.18	1.18
80969	Α	1	20	0.44	0.24	1.06
80969	В	0	5	-0.43	0.39	0.96
80969	С	0	12	-0.48	0.28	0.97
80969	D	0	7	-0.69	0.45	0.77
80970	Α	1	30	0.37	0.16	1.04
80970	В	0	7	-0.78	0.74	1.04
80970	С	0	4	-0.27	0.46	1.04
80970	D	0	6	-0.15	0.37	1.14
80971	Α	1	38	0.32	0.15	0.82

80971	В	0	2	0.7	0.94	3.55
80971	С	0	5	-0.63	0.44	0.89
80971	D	0	2	-4.67	0.48	0.09
80972	Α	1	35	0.49	0.2	1.06
80972	В	0	6	-0.23	0.25	0.88
80972	С	0	9	-0.24	0.24	0.92
80972	D	0	2	-2.38	2.77	0.73
80973	Α	1	16	0.36	0.3	1.06
80973	В	0	5	-0.39	0.64	2
80973	С	0	19	-0.55	0.19	0.87
80973	D	0	5	-2	1	0.57
80974	Α	1	17	0.07	0.24	0.97
80974	В	0	18	-0.78	0.26	0.99
80974	С	0	6	-0.69	0.36	0.89
80974	D	0	4	-1.48	1.23	0.85
80975	Α	1	24	0.45	0.26	0.85
80975	В	0	11	-0.41	0.26	1.19
80975	С	0	6	-0.8	0.16	0.6
80975	D	0	6	-1.33	0.46	0.56
80976	Α	1	29	0.42	0.3	0.94
80976	В	0	8	-0.33	0.21	1.13
80976	С	0	3	-1.17	0.33	0.48
80976	D	0	5	-1.62	0.83	0.87
80977	Α	1	26	0.63	0.2	0.7
80977	В	0	9	-0.81	0.22	0.61
80977	С	0	5	-0.77	0.53	0.74
80977	D	0	5	-1.16	0.59	0.68
80978	Α	1	19	0.54	0.25	0.79
80978	В	0	2	-1.12	0.09	0.37
80978	С	0	12	-0.14	0.2	1.28
80978	D	0	7	-1.69	0.34	0.28
80979	Α	1	23	0.85	0.25	0.78
80979	В	0	4	-0.19	0.29	0.89
80979	С	0	11	-0.68	0.18	0.57
80979	D	0	5	-1.39	1.03	0.77
80980	Α	1	16	0.69	0.45	1.21

80980	В	0	8	-0.39	0.26	0.78
80980	С	0	7	-0.77	0.42	0.73
80980	D	0	16	-0.43	0.44	1.49
80981	Α	1	18	0.33	0.25	1.05
80981	В	0	8	-1.07	0.31	0.56
80981	С	0	10	0.24	0.33	2.34
80981	D	0	10	-1.36	0.56	0.65
80982	Α	1	19	0.8	0.34	1.09
80982	В	0	15	0.15	0.24	1.51
80982	С	0	5	0.23	0.84	3.47
80982	D	0	6	-1.13	0.24	0.29
80983	Α	1	23	0.63	0.35	1.07
80983	В	0	14	-0.11	0.21	1.21
80983	С	0	4	-0.95	0.32	0.44
80983	D	0	6	-0.43	0.3	0.85
80984	Α	1	8	1.51	0.66	0.72
80984	В	0	8	-0.19	0.23	0.71
80984	С	0	22	-0.12	0.15	0.8
80984	D	0	7	-1.1	0.85	0.82
80985	Α	1	13	0.66	0.33	1.22
80985	В	0	9	-0.2	0.18	0.66
80985	С	0	12	0.11	0.26	1.16
80985	D	0	12	-0.02	0.31	1.12
80986	Α	1	16	0.75	0.26	0.92
80986	В	0	6	-1.34	0.74	0.4
80986	С	0	13	0.24	0.32	1.8
80986	D	0	11	-0.48	0.25	0.61
80987	Α	1	16	0.79	0.47	1.59
80987	В	0	10	-0.22	0.25	0.9
80987	С	0	8	-0.58	0.26	0.64
80987	D	0	15	-0.45	0.41	1.12
80988	Α	1	27	0.31	0.26	0.96
80988	В	0	5	-1.15	0.56	0.61
80988	С	0	2	-0.59	0.01	0.72
80988	D	0	10	-0.63	0.42	1.43
80989	Α	1	15	0.01	0.23	1.2

80989	В	0	7	0.18	0.35	2.4
80989	С	0	10	-0.53	0.26	0.99
80989	D	0	11	-1.35	0.44	0.59
80990	Α	1	19	0.13	0.25	1.14
80990	В	0	2	-0.65	0.07	0.63
80990	С	0	15	-0.11	0.19	1.39
80990	D	0	9	-1.41	0.54	0.58
80991	Α	1	29	0.25	0.21	1.14
80991	В	0	8	-0.18	0.47	2.4
80991	С	0	4	-1.41	0.36	0.37
80991	D	0	6	-1.15	0.94	1.3
80992	Α	1	14	1.03	0.6	1.36
80992	В	0	9	-0.28	0.31	1.22
80992	С	0	11	-0.69	0.15	0.63
80992	D	0	11	-1.25	0.45	0.55
80993	Α	1	31	0.23	0.26	1.09
80993	В	0	2	-1.03	1.15	0.86
80993	С	0	8	-0.24	0.32	1.66
80993	D	0	3	-1.14	0.2	0.46
80994	Α	1	25	-0.1	0.24	1.45
80994	В	0	3	0.22	0.39	2.1
80994	С	0	11	-0.62	0.19	0.95
80994	D	0	5	-1.14	0.55	0.67
80995	Α	1	22	0.93	0.31	0.88
80995	В	0	7	-0.82	0.32	0.53
80995	С	0	7	-0.16	0.31	0.98
80995	D	0	11	-0.86	0.55	0.93
80996	Α	1	26	0.66	0.23	0.74
80996	В	0	8	-0.67	0.27	0.84
80996	С	0	9	-1.17	0.51	0.6
80996	D	0	2	-2.17	1.1	0.23
80997	Α	1	21	1.03	0.42	0.88
80997	В	0	15	-0.23	0.3	1.4
80997	С	0	8	-0.69	0.31	0.65
80997	D	0	3	-1.1	0.23	0.33
80998	Α	1	16	0.79	0.42	1.32

80998	В	0	4	-0.43	0.37	0.57
80998	С	0	14	0.2	0.45	2.61
80998	D	0	11	0.02	0.23	1.02
80999	Α	1	34	0.33	0.21	0.83
80999	В	0	2	-0.49	0.67	1.06
80999	С	0	5	-0.27	0.72	2.69
80999	D	0	4	-1.97	0.6	0.37
81000	Α	1	8	1.88	0.84	0.69
81000	В	0	5	-0.31	0.74	1.85
81000	С	0	13	-0.29	0.29	0.91
81000	D	0	20	-0.16	0.17	0.73

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 1 (Mean Measure = -0.66)

Order for Test	Item	Focal Point	Domain	Measure
1	80711	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.96
2	80566	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.74
3	80732	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.46
4	80552	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-1.41
5	80428	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.51
6	80736	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.95
7	80283	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.81
8	80866	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.6
9	80265	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.52
10	80573	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.41
11	80729	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.3
12	80888	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.16
13	80449	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.02
14	80899	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.03
15	80554	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	0.42
16	80413	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.12

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 2 (Mean Measure = -0.67)

Order	, a a o 1 10g	. 330 Monitoring Modouro. Data	Analysis, Number and Operation, and Algebra Form 2 (Mean Measure = -0.67)	
for Test	Item	Focal Point	Domain	Measure
1	80861	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.1
2	80734	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.77
3	80703	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-1.55
4	80407	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-1.34
5	80578	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.94
6	80721	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.08
7	80887	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.82
8	80731	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.68
9	80596	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.58
10	80858	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.43
11	80430	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.26
12	80267	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.17
13	80271	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.08
14	80422	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.09
15	80708	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	0.32
16	80572	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.19

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 3 (Mean Measure = -0.67)

Order for Test	Item	Focal Point	Domain	Measure
1	80748	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-2.29
2	80715	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.71
3	80560	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-1.46
4	80744	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.3
5	80723	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.58
6	80580	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.99
7	80853	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.89
8	80258	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.63
9	80881	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.53
10	80440	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.4
11	80593	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.29
12	80438	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.12
13	80417	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.09
14	80446	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.15
15	80274	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.45
16	80890	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.23

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 4 (Mean Measure = -0.67)

Order for Test	Item	Focal Point	Domain	Measure
1	80300	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.98
2	80891	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.9
3	80870	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.55
4	80553	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-1.32
5	80290	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	0.73
6	80864	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.02
7	80584	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.85
8	80277	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.68
9	80859	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.57
10	80260	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.42
11	80586	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.26
12	80253	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.15
13	80256	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.04
14	80447	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.12
15	80592	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.32
16	80270	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.21

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 5 (Mean Measure = -0.68)

Order for Test	Item	Focal Point	Domain	Measure
1	80403	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-2.17
2	80893	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.71
3	80414	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.51
4	80862	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.31
5	80252	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	0.5
6	80876	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.08
7	80869	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.83
8	80702	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.61
9	80894	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.5
10	80860	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.45
11	80448	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.31
12	80423	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.19
13	80404	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.05
14	80585	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	0.07
15	80425	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.48
16	80741	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.13

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 6 (Mean Measure = -0.66)

Order for Test	Item	Focal Point	Domain	Measure
1	80567	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.05
2	80561	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.79
3	80268	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.57
4	80272	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.39
5	80884	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	1.09
6	80294	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1
7	80589	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.92
8	80872	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.64
9	80739	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.57
10	80705	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.4
11	80273	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.21
12	80282	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.18
13	80412	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.03
14	80416	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	0.04
15	80291	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.23
16	80444	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.15

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 7 (Mean Measure = -0.66)

Order for Test	Item	Focal Point	Domain	Measure
1	80717	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.24
2	80563	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.71
3	80406	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-1.49
4	80865	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.37
5	80577	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.94
6	80588	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.98
7	80408	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.87
8	80259	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range to summarize and compare data sets.	-0.67
9	80286	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.54
10	80594	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.41
11	80269	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.27
12	80420	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.16
13	80900	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.09
14	80421	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.04
15	80878	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.42
16	80726	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.18

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 8 (Mean Measure = -0.67)

Order for Test	Item	Focal Point	Domain	Measure
1	80733	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.94
2	80262	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.9
3	80266	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.62
4	80740	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.3
5	80871	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.65
6	80281	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.96
7	80600	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.89
8	80590	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.63
9	80571	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.48
10	80299	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.44
11	80728	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.29
12	80725	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.19
13	80851	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.03
14	80418	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	0.19
15	80745	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.28
16	80895	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.23

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 9 (Mean Measure = -0.67)

Order for Test	Item	Focal Point	Domain	Measure
1	80714	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.02
2	80855	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-1.8
3	80254	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-1.66
4	80892	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.3
5	80735	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	0.69
6	80432	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.76
7	80551	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.61
8	80883	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.58
9	80581	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.3
10	80570	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.23
11	80288	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.11
12	80558	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	0.15
13	80429	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.22
14	80257	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	0.29
15	80595	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.51
16	80730	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.15

Table 3
Eighth Grade Progress Monitoring Measure: Data Analysis, Number and Operation, and Algebra Form 10 (Mean Measure = -0.68)

Order for Test	Item	Focal Point	Domain	Measure
1	80261	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.2
2	80598	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.73
3	80284	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.5
4	80562	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.32
5	80727	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.51
6	80709	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-1.04
7	80285	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.86
8	80889	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.63
9	80879	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.58
10	80437	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.4
11	80297	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.26
12	80436	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.15
13	80749	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.03
14	80415	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	0.19
15	80410	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	0.27
16	80298	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.18

Table 3
Eighth Grade Benchmark Measure: Data Analysis, Number and Operation, and Algebra Form 1 (Mean Measure = -0.67)

Order for Test	Item	Focal Point	Domain	Measure
1	80716	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-2.09
2	80597	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.79
3	80583	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.51
4	80718	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.37
5	80575	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.59
6	80289	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.99
7	80441	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.89
8	80720	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.67
9	80439	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.59
10	80435	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.43
11	80255	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.22
12	80579	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-0.12
13	80564	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.05
14	80854	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	0.16
15	80898	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.42
16	80867	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.21

Table 3
Eighth Grade Benchmark Measure: Data Analysis, Number and Operation, and Algebra Form 2 (Mean Measure = -0.66)

Order for Test	Item	Focal Point	Domain	Measure
1	80295	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-2.17
2	80591	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.83
3	80292	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.67
4	80737	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-1.3
5	80875	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	1.37
6	80706	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-1.08
7	80863	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.87
8	80402	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.7
9	80719	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-0.49
10	80857	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.45
11	80852	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.29
12	80555	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.19
13	80433	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.07
14	80278	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.07
15	80450	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.33
16	80565	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.18

Table 3
Eighth Grade Benchmark Measure: Data Analysis, Number and Operation, and Algebra Form 3 (Mean Measure = -0.67)

Order for Test	Item	Focal Point	Domain	Measure
1	80296	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-2.57
2	80569	Data Analysis, Number and Operation, and Algebra	Organize and display data to pose and answer questions including pie charts, histograms, box plots, and scatter plots.	-1.73
3	80746	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.51
4	80710	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-1.29
5	80724	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	0.98
6	80722	Data Analysis, Number and Operation, and Algebra	Compare descriptive statistics and evaluate how changes in data affect those statistics.	-1.02
7	80405	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.86
8	80557	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.6
9	80897	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.51
10	80743	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.44
11	80443	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-0.26
12	80582	Data Analysis, Number and Operation, and Algebra	Describe the strengths and limitations of a particular statistical measure and justify its use in a given situation.	-0.14
13	80704	Data Analysis, Number and Operation, and Algebra	Use descriptive statistics, including mean, median, mode, and range. to summarize and compare data sets.	-0.04
14	80742	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.12
15	80445	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	0.32
16	80750	Data Analysis, Number and Operation, and Algebra	Interpret and analyze graphical displays of data and descriptive statistics.	-1.23

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 1 (Mean Measure = -0.10)

Order for Test	Item	Focal Point	Domain	Measure
1	80201	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.88
2	80964	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.42
3	80657	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.18
4	80965	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.93
5	80688	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.3
6	80056	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.39
7	80364	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.23
8	80376	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.1
9	80978	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.03
10	80246	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.1
11	80801	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.36
12	80844	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.62
13	80382	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.71
14	80987	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.85
15	80845	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.23
16	80818	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.64

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 2 (Mean Measure = -0.10)

Order for Test	Item	Focal Point	Domain	Measure
1	80205	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.81
2	80230	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.36
3	80967	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.28
4	80961	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.87
5	80383	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.38
6	80694	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.38
7	80679	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.24
8	80685	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.13
9	80072	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.07
10	80698	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.19
11	80827	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.31
12	80506	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.64
13	80980	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.74
14	80998	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.9
15	80846	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.07
16	80063	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.65

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 3 (Mean Measure = -0.10)

Order for Test	Item	Focal Point	Domain	Measure
1	80670	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.89
2	80656	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.4
3	80212	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.15
4	80671	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.96
5	80094	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.34
6	80369	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.42
7	80075	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.22
8	80237	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.17
9	80078	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.04
10	80974	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.17
11	80390	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.31
12	80816	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.63
13	80802	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.73
14	80686	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.93
15	80093	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.09
16	80820	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.62

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 4 (Mean Measure = -0.09)

Order for Test	Item	Focal Point	Domain	Measure
1	80659	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.74
2	80661	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.41
3	80209	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.19
4	80678	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.92
5	80090	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.31
6	80954	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.32
7	80368	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.29
8	80672	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.16
9	80835	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.04
10	80355	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.12
11	80395	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.37
12	80399	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.55
13	80392	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.81
14	80832	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.92
15	80838	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.13
16	80243	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.69

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 5 (Mean Measure = -0.10)

Order for Test	Item	Focal Point	Domain	Measure
1	80067	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.88
2	80221	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.31
3	80665	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.29
4	80222	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.84
5	80354	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.57
6	80682	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.39
7	80951	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.28
8	80810	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.13
9	80377	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.05
10	80814	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.22
11	80681	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.34
12	80690	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.59
13	80374	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.7
14	80804	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.85
15	80700	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1
16	80680	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.65

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 6 (Mean Measure = -0.09)

Order for Test	Item	Focal Point	Domain	Measure
1	80662	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.71
2	80079	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.45
3	80660	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.14
4	80667	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.92
5	80831	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.36
6	80359	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.33
7	80813	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.24
8	80692	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.18
9	80983	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.04
10	80822	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.16
11	80393	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.38
12	80982	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.55
13	80240	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.73
14	80839	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.94
15	80843	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.08
16	80077	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.67

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 7 (Mean Measure = -0.09)

Order for Test	Item	Focal Point	Domain	Measure
1	80217	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.81
2	80070	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.35
3	80229	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.19
4	80211	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.95
5	80091	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.32
6	80215	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.44
7	80082	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.21
8	80352	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.12
9	80054	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.05
10	80841	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.2
11	80086	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.36
12	80083	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.57
13	80250	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.73
14	80389	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.94
15	80386	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.12
16	80380	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.61

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 8 (Mean Measure = -0.10)

		<u> </u>		
Order for Test	Item	Focal Point	Domain	Measure
1	80654	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.88
2	80206	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.39
3	80068	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.26
4	80062	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.87
5	80388	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.57
6	80977	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.42
7	80840	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.25
8	80363	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.11
9	80242	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.04
10	80351	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.11
11	80973	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.43
12	80087	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.55
13	80808	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.72
14	80051	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.85
15	80809	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.03
16	80994	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.65

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 9 (Mean Measure = -0.09)

		<u> </u>	,	
Order for Test	Item	Focal Point	Domain	Measure
1	80064	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.71
2	80358	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.43
3	80834	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-1.14
4	80204	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.91
5	80398	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.32
6	80812	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.31
7	80080	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.3
8	80396	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.11
9	80053	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	0.02
10	80969	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.15
11	80981	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.35
12	80233	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.57
13	80371	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.76
14	80096	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.89
15	80826	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	1.16
16	80057	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.68

Table 4
Eighth Grade Progress Monitoring Measure: Geometry and Measurement Form 10 (Mean Measure = -0.10)

Order for Test	Item	Focal Point	Domain	Measure
1	80958	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.91
2	80065	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.31
3	80993	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-1.19
4	80976	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.91
5	80085	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.47
6	80687	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.39
7	80675	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.23
8	80365	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.12
9	80059	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.07
10	80391	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.14
11	80076	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.37
12	80089	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.63
13	80992	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.7
14	80986	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.86
15	80384	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.05
16	80073	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.62

Table 4
Eighth Grade Benchmark Measure: Geometry and Measurement Form 1 (Mean Measure = -0.09)

Order for Test	Item	Focal Point	Domain	Measure
1	80651	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.83
2	80652	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.43
3	80658	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.1
4	80226	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.96
5	80805	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.37
6	80370	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.33
7	80817	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.29
8	80069	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.14
9	80684	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.05
10	80248	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.18
11	80518	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.33
12	80677	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.5
13	80689	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.84
14	80387	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.91
15	80397	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.08
16	80972	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.68

Table 4
Eighth Grade Benchmark Measure: Geometry and Measurement Form 2 (Mean Measure = -0.09)

Order for Test	Item	Focal Point	Domain	Measure
1	80960	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.8
2	80674	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.38
3	80663	Geometry and Measurement	Use similar triangles to find unknown lengths.	-1.22
4	80241	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.88
5	80235	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	1.31
6	80379	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.41
7	80361	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.23
8	80979	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.09
9	80249	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	-0.03
10	80245	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.1
11	80989	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.37
12	80836	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.55
13	80095	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.79
14	80367	Geometry and Measurement	Use similar triangles to find unknown lengths.	0.89
15	80098	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	1.17
16	80210	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.64

Table 4
Eighth Grade Benchmark Measure: Geometry and Measurement Form 3 (Mean Measure = -0.10)

Order for Test	Item	Focal Point	Domain	Measure
1	80959	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.84
2	80223	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-1.4
3	80955	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-1.17
4	80666	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.94
5	80357	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.47
6	80683	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	-0.36
7	80975	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	-0.26
8	80052	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	-0.16
9	80231	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.04
10	80990	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.13
11	80847	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.39
12	80081	Geometry and Measurement	Use models to explore the validity of the Pythagorean Theorem using a variety of methods.	0.5
13	80842	Geometry and Measurement	Analyze and apply the Pythagorean Theorem to find distances in a variety of 2- and 3-dimensional contexts.	0.82
14	80825	Geometry and Measurement	Use models to show that the sum of the angles of any triangle is 180 degrees and apply this fact to find unknown angles.	0.88
15	80806	Geometry and Measurement	Use properties of parallel lines, transversals and angles to solve problems, including determining similarity or congruence of triangles.	1.02
16	80819	Geometry and Measurement	Use similar triangles to find unknown lengths.	-0.67

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 1 (Mean Measure = 0.37)

		0 0	,	
Order for Test	Item	Focal Point	Domain	Measure
1	80452	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	80452
2	80004	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	80004
3	80037	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	80037
4	80917	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	80917
5	80345	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.29
6	80617	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.21
7	80157	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.36
8	80321	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.45
9	80025	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.58
10	80948	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.64
11	80341	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.75
12	80165	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.84
13	80330	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.92
14	80486	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.1
15	80470	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.15
16	80012	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.09

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 2 (Mean Measure = 0.36)

Order for Test	Item	Focal Point	Domain	Measure
1	80608	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.97
2	80786	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.79
3	80335	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.45
4	80303	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.24
5	80919	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.22
6	80050	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.22
7	80038	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.36
8	80467	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.43
9	80906	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.56
10	80950	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.66
11	80632	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.72
12	80472	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.89
13	80182	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.94
14	80905	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	1.05
15	80629	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.12
16	80188	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.08

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 3 (Mean Measure = 0.37)

				-
Order for Test	Item	Focal Point	Domain	Measure
1	80909	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.01
2	80763	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.7
3	80465	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.59
4	80920	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.13
5	80925	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.25
6	80762	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.19
7	80475	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.36
8	80323	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.45
9	80755	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.58
10	80044	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.65
11	80795	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.76
12	80344	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.86
13	80614	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.96
14	80042	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.02
15	80308	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	1.19
16	80046	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.09

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 4 (Mean Measure = 0.37)

			,	
Order for Test	Item	Focal Point	Domain	Measure
1	80625	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-1.1
2	80328	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	-0.73
3	80324	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.48
4	80902	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.2
5	80473	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.23
6	80482	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.25
7	80456	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.36
8	80192	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.45
9	80029	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.57
10	80156	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.68
11	80013	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.76
12	80343	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.88
13	80199	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.95
14	80640	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.04
15	80169	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.14
16	80346	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.09

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 5 (Mean Measure = 0.38)

Order for Test	Item	Focal Point	Domain	Measure
1	80305	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.95
2	80476	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.79
3	80311	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.46
4	80312	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.12
5	80799	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.29
6	80342	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.23
7	80630	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.32
8	80631	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.42
9	80621	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.5
10	80924	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.66
11	80462	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.78
12	80175	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.89
13	80164	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.96
14	80022	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.08
15	80463	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.16
16	80319	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.04

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 6 (Mean Measure = 0.36)

Order for Test	Item	Focal Point	Domain Common (Model Model Mod	Measure
1	80306	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.06
2	80641	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.65
3	80626	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.51
4	80797	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	-0.17
5	80454	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	1.26
6	80784	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.18
7	80937	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.34
8	80455	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.45
9	80912	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.57
10	80045	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.65
11	80196	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.73
12	80777	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.89
13	80153	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.94
14	80461	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.02
15	80928	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.12
16	80460	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.07

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 7 (Mean Measure = 0.37)

Order for Test	Item	Focal Point	Domain	Measure
1	80307	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.97
2	80302	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.7
3	80155	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.41
4	80916	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.14
5	80167	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.22
6	80602	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.13
7	80604	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.34
8	80633	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.42
9	80915	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.53
10	80184	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.69
11	80650	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.76
12	80033	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.85
13	80782	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.97
14	80791	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.07
15	80767	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.17
16	80474	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.02

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 8 (Mean Measure = 0.37)

Order for Test	Item	Focal Point	Domain	Measure
1	80009	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-1.07
2	80191	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.77
3	80310	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.56
4	80936	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.26
5	80484	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.29
6	80320	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.26
7	80774	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.36
8	80776	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.46
9	80922	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.58
10	80933	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.69
11	80910	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.78
12	80904	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.89
13	80921	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.93
14	80781	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.1
15	80918	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.16
16	80339	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.1

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 9 (Mean Measure = 0.37)

Order for Test	Item	Focal Point	Domain	Measure
1	80947	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	-0.92
2	80151	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.68
3	80185	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.44
4	80001	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.1
5	80771	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.25
6	80313	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.12
7	80620	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.31
8	80161	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.42
9	80648	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.49
10	80913	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.65
11	80483	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.72
12	80934	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.89
13	80464	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.94
14	80770	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.03
15	80332	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.14
16	80338	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.02

Table 5
Eighth Grade Progress Monitoring Measure: Algebra Form 10 (Mean Measure = 0.37)

		0 0	,	
Order for Test	Item	Focal Point	Domain	Measure
1	80005	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.96
2	80451	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.76
3	80152	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.51
4	80337	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.11
5	80494	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.25
6	80018	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.23
7	80172	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.34
8	80927	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.42
9	80932	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.54
10	80317	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.65
11	80607	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.74
12	80753	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.86
13	80047	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.92
14	80478	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.09
15	80949	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.16
16	80609	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.05

Table 5
Eighth Grade Benchmark Measure: Algebra Form 1 (Mean Measure = 0.37)

Order for Test	Item	Focal Point	Domain	Measure
1	80006	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.92
2	80760	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.63
3	80010	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.44
4	80756	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.18
5	80939	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.29
6	80495	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.12
7	80035	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.32
8	80611	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.42
9	80492	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.51
10	80315	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.67
11	80187	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	0.77
12	80200	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.89
13	80779	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.96
14	80171	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.05
15	80350	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.13
16	80764	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.01

Table 5
Eighth Grade Benchmark Measure: Algebra Form 2 (Mean Measure = 0.37)

Order for Test	Item	Focal Point	Domain	Measure
1	80334	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	-1.07
2	80154	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.78
3	80003	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.5
4	80011	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	-0.11
5	80772	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.2
6	80020	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.24
7	80477	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.36
8	80911	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.42
9	80008	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.58
10	80329	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.69
11	80019	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	0.77
12	80479	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.85
13	80946	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.94
14	80768	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	1.08
15	80628	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	1.18
16	80612	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.09

Table 5
Eighth Grade Benchmark Measure: Algebra Form 3 (Mean Measure = 0.37)

Order for Test	Item	Focal Point	Domain	Measure
1	80636	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	-0.91
2	80322	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	-0.68
3	80457	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.48
4	80304	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	-0.15
5	80926	Algebra	Recognize how the properties (i.e. slope, intercepts, continuity, and discreteness) of linear relationships are shown in the different representations.	1.27
6	80757	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.15
7	80027	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.34
8	80453	Algebra	Use linear functions and equations to represent, analyze and solve a variety of problems, and to make predictions and inferences.	0.42
9	80198	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.51
10	80761	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.65
11	80034	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.74
12	80030	Algebra	Determine the slope of a line and understand that it is a constant rate of change.	0.89
13	80646	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	0.95
14	80792	Algebra	Use systems of linear equations in two variables to represent, analyze, and solve a variety of problems.	1.01
15	80800	Algebra	Relate systems of two linear equations in two variables to pairs of lines that are intersecting, parallel, or the same line.	1.16
16	80914	Algebra	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	0.02

References

- Alonzo, J., Ulmer, K., Tindal, G., & Glasgow, A. (2006). easyCBM online assessment system. http://easycbm.com. Eugene, OR: Behavioral Research and Teaching, University of Oregon.
- Beddow, P. A., Kettler, R. J., & Elliott, S. N. (2008). Test Accessibility and Modification Inventory (TAMI). Peabody College, Vanderbilt University.
- Johnstone, C., Altman, J., & Thurlow, M. (2006). A state guide to the development of universally designed assessments. Minneapolis, MN: University of Minnesota, National Center on Educational Outcomes.
- McMaster, K.L., Fuchs, D., Fuchs, L.S., & Compton, D.L. (2005). Responding to non-responders: An experimental field trial of identification and intervention methods. *Exceptional Children*, 71, 445–463.

Stevens, J. (2007). Personal Communication.

Torgensen, J.K., Alexander, A.W., Wagner, R.K., Rashotee, C.A., Voeller, K.K.S., & Conway, T. (2001). Intensive remedial instruction for children with severe reading disabilities: Immediate and long-term outcomes from two instructional approaches. *Journal of Learning Disabilities*, 34, 33–58.