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Abstract 
	  
In this paper we introduce the basic concepts of structural equation modeling (SEM) for 

consumers of research. The purpose is to help provide readers a basis from which articles 

employing SEM can evaluated; but not necessarily to teach readers how to conduct an analysis. 

We assume little prior statistical knowledge, and thus begin by introducing the concepts of 

simple linear regression. We then expand to multiple regression, path analysis, confirmatory 

factor analysis, and finally, structural equation models. 
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Basic Concepts of Structural Equation Modeling 
	  

Structural equation modeling (SEM) is a powerful and flexible approach to statistically 

model relations among variables, or measured characteristics of interest (e.g., student 

achievement). Two characteristics of SEM differentiate it from other statistical techniques; the 

ability to model: (a) latent, unobserved or unmeasured theoretical variables by using a 

combination of two or more observed variables; and (b) complex structural relations rather than 

simple X affects Y relations. 

In this paper, we present a basic overview of SEM and the intended audience is 

consumers of research using SEM practices. Thus, the purpose of the paper is to provide a 

conceptual understanding of SEM, but not necessarily to show the reader how to conduct an 

SEM analysis. We begin by first introducing common SEM symbolism, sometimes referred to as 

reticular action model (RAM) symbols (Kline, 2010). We then introduce simple linear 

regression, which serves as the basis for SEM, and provide an example using real data. These 

same data are then used to build increasingly complex models using multiple regression, then 

path analysis, confirmatory factor analysis, and finally a full SEM model. We show how the 

RAM symbols can be used to describe the modeled relationships regardless of the level of 

complexity. We conclude with a discussion of the flexibility of SEM. 

RAM Symbols 
	  

Five basic RAM symbols can be used to describe essentially any relation among 

variables: directional arrows , double-headed curved arrows , circular curved arrows 

	  

, boxes , and circles . The boxes and circles represent the variables of interest, while all 

arrows display relations. The key distinction between variables depicted by boxes versus circles 

is whether the variable is observed or measured in some way (e.g., student achievement test) or if 
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it represents some theoretical entity (e.g., motivation). Boxes represent observed variables and 

circles represent theoretical variables. The directional arrows imply one variable having a direct 

affect on another (i.e., one variable regressed on the other), the double-headed curved arrows 

imply a covariance between two variables (or in its standardized form, a correlation), and the 

circular curved arrows represent the variance of a variable. The circular curved arrow symbol is 

used because the variance of a variable is literally its covariance with itself. The key distinction 

between directional and double-headed curved arrows is whether the model is implying that one 

variable has an affect on the other (directional), or whether the variables are simply related 

(double-headed curved). 

Generally, the choice of the parameter (directional or double-headed curved arrow) is 

based on the hypothesized relation among the variables (i.e., the theory behind the model), but an 

important consideration is also temporal ordering. For example, a variable cannot have a direct 

affect on another variable that has been measured earlier in time, but the variable measured first 

can have a direct affect on the variable measured second, or the variables can be correlated. 

When the symbols are used in conjunction to describe a set of relations, the resultant figure is 

known as a path diagram. Circular curved arrows should always be represented in the path 

diagram and always with the exogenous variables (the independent variables, or those most 

“upstream” in the path diagram). 
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Figure 1 – Correlation and Regression Path Diagrams 
	  
	  
	  
	  
	  
	  
	  

A  X  Y 
	  
	  
	  
	  
	  

B  X  Y 
	  
	  
	  

Figure 1 displays two path diagrams depicting simple relations with the RAM symbols. 

Note that only observed variables are shown to this point, but later in the paper we introduce 

latent, unobserved variables. 

Path diagram A shows two variables that are related, with no directionality. The variables 

are allowed to correlate (as indicated by the double headed curved arrow) but one variable does 

not necessarily affect the other. By contrast, path diagram B implies a direct affect of X on Y. It 

is important to be cautious with language and not state that X causes Y, but simply that X affects 

Y. In path diagram A the variables are simply correlated, each with a variance component. The 

diagram implies that the variance in one variable “goes along” with variance in the other 

variable. Thus both variables have a variance component. For example, elementary students’ 
	  
shoe size may be correlated with their reading ability, because older students have received more 

schooling – leading to higher reading levels – while also being more mature physically. Thus 

there is a positive correlation between shoe size and reading ability, despite one variable having 

no affect on the other. 
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In contrast, path diagram B represents a regression equation for two variables. Note that 

only the X variable has a variance component. In path diagram B, the X variable is accounting 

for the variance in Y. The variance in Y is being explained by the variance in X (through the 

regression equation). It is also important to note that at this point there is no residual term 

represented, which would mean that X is fully accounting for the variance in Y and that the 

variables are measured without error. In application this would essentially never be the case and 

a residual term would need to be included for Y. Residual terms will be discussed in more depth 

later in the paper. 

Simple Linear Regression 
	  

The goal of most statistical analyses is to explain an event (e.g. treatment or outcome). In 

public schools, the treatment is typically instructional and the outcome performance or progress 

on tests and measures of achievement. 

	  

Problem: Why do some students perform well on the state test while others perform poorly? 
	  
	  

The first step in answering this question is to hypothesize some variables that may play a 

role in students’ state test performance. For instance, do students perform differently because of 

the instruction they are receiving? Is it because of a general intelligence level? Is it because of 

the students’ home life? All of these are possible sources of variance for performance on a state 

test. For instance, perhaps one student performs differently on the state test from other students, 

in part, because he or she has parents that require homework every night. Knowing this 

information can help us to understand, in part, why the student is performing differently on the 

state test. No single variable (i.e., intelligence, home life, etc.), however, can ever explain fully 

why a student performs differently from other students. In application, we are always trying to 

explain, or account, for as much of the variance in students’ scores as possible. 
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In regression, the variance in students’ scores can be divided into three components: the 

average of all scores, the coefficients in the model, and unaccounted variance or residual. If we 

are provided a group of scores, and we know nothing about any individual student, our best 

guess as to how any one student would perform on the test would be the average of all the other 

scores (Galton, 1886). In Figure 2, you see students’ math state test scores plotted along the y- 

axis, and a constant along the x-axis. This figure shows the variance in the state test scores. 

Again, if we know nothing about these students, our best estimate of an individual student’s 

performance would be the average of all students. For some students this guess would be fairly 

close (those whose scores are near the average). For most students, however, this guess would 

not summarize their performance very well. 

Figure 2 – Variance of State Assessment Scores 

 
If we add a predictor variable to the x-axis, the scatterplot changes and we’re able to get a 

regression line. Figure 3 shows the same data, but this time plotted against students’ scores on a 

formative math assessment. Now the predictor variable – the formative assessment – is regressed 

on the outcome and provides more information to estimate any individual student’s performance. 



6 
SEM 

	  

	  
	  
The goal of conducting a regression analysis is to fit a line that summarizes the data best by 

minimizing the distance between the line and the data points. 

Figure 3 – State Assessment with Predictor Variable and Regression Line 

 
	  

Figure 4 below again shows the same data, but with the variance decomposed into its 

three sections for a single student. Notice that for this individual student (outlined with a red 

box), the variance associated with the average score is largest. However, using just that average 

score does not summarize this student’s performance well. Adding the regression line gets us 

much closer to the student’s score, but still does not fully account for why the student scored 

where he or she did. The red portion in the figure is the variance not accounted for and is 

generally called the residual. Residual refers to what is “left over” after the regression line. 

Although it includes measurement error (e.g., unreliability in the measurement tool), the residual 

is a result of multiple different factors including unreliability in the measure and omitted 

variables that might also explain the outcome. Thus we use the term “residual” throughout this 

paper in reference to unaccounted variance. 
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Figure 4 – Regression Line with the Variance Decomposed 
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When conducting a regression analysis, we attempt to maximize the variance accounted 

for by the regression equation (regression line) and minimize the variance not accounted for (red 

line – distance each “dot” falls away from the regression line). If 100% of the variance were 

accounted for, all the dots on the scatterplot would fall on the regression line. However, as 

previously stated, we are essentially never able to completely explain all the variance and there 

will nearly always be some amount of residual variance. The scatterplots displayed in Figures 3 

and 4 account for 29% of the variance in state test scores. The actual statistic behind the variance 

accounted for is simply the squared correlation coefficient. In other words, the correlation 

between the math formative assessment and math state test is .54, which when squared equals 

.29. 
	  

The regression line can be summarized by the regression coefficient, beta, which 

represents the change in the outcome with every one-unit change in the independent variable. It 
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is often reported in its standardized form, , which represents the change in the outcome in 

standard deviation units for every one standard deviation change in the independent variable. 

We can also draw the same relation depicted in the scatterplot with a path diagram (see 

Figure 5 below). Notice that this path diagram differs from the one in Figure 1B in one important 

way – there is now a residual term. From inspecting the scatterplot in Figures 3 and 4 it is quite 

apparent that our predictor variable, Formative Assessment, does not account for all the variance 

in our dependent variable, State Assessment. The variance that is not accounted for (the red part 

in Figure 4) ends up in the residual term in the path diagram. The relation can be conceptualized 

through the path diagram as two competing entities vying for the variance in State Assessment. 

Our predictor variable, Formative Assessment, gets to go first and “eat up” all the variance that is 

common between the two variables. The residual term goes next, and takes everything left, 

leaving State Assessment without any variance. The variance of State Assessment is thus parsed 

out into a section accounted for by the predictor variable and a section not accounted for, the 

residual. Notice that the residual term has its own variance, which is simply the left over State 

Assessment variance not associated with the predictor variable. 

Figure 5 – Linear Regression Path Diagram Example 
	  

	  
	  
	  

Math 
Formative 
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Math 
State 

1 
	  
	  
	  

Notice that the residual term is a circle, not a box, implying an unobserved variable. By 

definition, the residual term is unaccounted for variance, which means it also is unmeasured and 

thus unobserved. Notice that the path from the residual to the dependent variable has a 1 by it, 

which implies that the path has been “fixed” to that value. All latent variables must have at least 
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one parameter (i.e., path or variance) fixed at a specified value to provide a scale. Without at least 

one path being fixed, the latent variable cannot be identified. Fixing a parameter at a specified 

value means that it cannot be tested for statistical significance. However, the model can still 

estimate a standardized value for fixed paths, which can be tested for statistical significance. 

Generally residual terms have the paths fixed, and not the variance, because we are typically 

interested in the variance in the residual and not the path from the residual to the dependent 

variable. Again, the variance within the residual term includes unreliability in the measured 

variables and/or variance associated with additional variables that are not included in the model. 

Multiple Regression 

A basic extension of simple linear regression, and a fundamental concept of SEM, is to 

apply multiple predictor variables to a single dependent variable. These multiple predictors may 

more fully account for the variance in the dependent variable and thus help us explain outcomes. 

Figure 6 below displays a multiple regression extension of the example outlined in the linear 

regression section. Notice that there are now two predictor variables, Reading Formative 

Assessment and Math Formative Assessment. These two variables are still predicting a single 

outcome – state test performance in Math. 

As with all research, it is important to have strong theoretical justifications for all 

statistical models applied. The model displayed in Figure 6 implies that students’ reading and 

math skills both play a role in the score they receive on a Math State Assessment. Theoretically, 

we could imagine both students’ reading and math skills playing a role in the Math State 

Assessment score because many items on the test require students to read. Notice also that the 

independent variables are allowed to correlate, given the double-headed curved arrow connecting 
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them. That is, we expect students' reading and math formative scores to be related, so we account 

for that in the model. 

Figure 6 – Multiple Regression Model 
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With a multiple regression model we can obtain a squared multiple correlation 

coefficient, otherwise known as the R2 value. The R2 value indicates the percent of variance 

accounted for by all the predictor variables. When there is just a single predictor variable, as in 

simple linear regression, the r2 value is the correlation coefficient squared. However, in multiple 

regression the R2 value represents the combined effects of all the predictor variables. The 

variance accounted for by simple linear regression and multiple linear regression are often 

differentiated by capitalizing the r. In other words, r2 represents the variance accounted for by a 

single predictor while R2 represents the variance accounted for by multiple predictors. 

In the simple linear regression model used before we had only used the Math Formative 

Assessment, which correlated with the state assessment at .54 and thus accounted for 29% of the 

total variance, r2 = .29. In the multiple regression example shown here, the formative math 

assessment still correlates at .54, but we now have the Reading Formative Assessment that 
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correlates at .55. The R2 value takes the combined effect of these two variables to calculate the 

total variance accounted for in the dependent variable, which in this case is .42. We would thus 

conclude that 42% of the variance in students' state math assessment performance is accounted 

for by the combined effects of both formative assessments. Note that there is overlapping 

variance among the predictor variables. In other words, the addition of a new variable does not 

bring entirely new information. Figure 7 depicts this relation in a Venn diagram. The top circle 

represents the total variance in the dependent variable – state test scores. The two bottom circles 

represent the variance associated with each independent variable. Taken individually, the Math 

Formative Assessment would account for the green and blue variance within state test scores, 

while Reading Formative Assessment would account for the red and blue variance. Together, 

each variable accounts for a unique portion of the overall variance (green and red for math and 

reading respectively), but also have shared variance (blue). The R2 value in multiple regression 

represents, conceptually, the green, blue and red portions of the total variance. 

Figure 7 – Shared variance accounted for by multiple predictor variables 
State test 

score variance 
	  
	  

State test score variance 
uniquely accounted for by the 

formative math test 

State test score variance 
uniquely accounted for by the 

formative reading test 
	  
	  
	  
	  
	  
	  
	  
	  
	  

Formative math test 
score variance 

	  
Shared variance 

accounted for by 

Formative reading test 
score variance 

both predictor variables 
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Path diagrams also can be used to display results of models. Figure 8 displays the results 

of the multiple regression model above. Generally, path diagrams are displayed with the 

standardized results (as in this case). When researchers apply more complex models they will 

often present the results with the path diagram, but for multiple regression analyses this generally 

is not the case. However, it may help to conceptualize the statistics by viewing them through the 

path diagram. The path coefficients are analogous to the standardized beta weights (i.e., the 

standardized regression coefficients) of regression, . 

R2 values are important statistics in any model, but are not always displayed on the path 
	  
diagram in more complex models. Because the multiple regression model is fairly simple, the 

single R2 value is displayed just below the dependent variable (.42). Thus, the path diagram 

displays the correlation between the predictors, the standardized regression weights, and the 

variance in the dependent variable accounted for by the predictors. We can also conclude that 

58% of the variance in the dependent variable is represented in the residual term (or unaccounted 

for by our model), given that 42% of the variance is accounted for by the predictor variables 

(1.00 - .42 = .58). 
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Figure 8 – Multiple regression analysis results 
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Path Analysis 
	  

Path analysis considers the correlation between variables based on the theory expressed 

in the path diagram. In theory, one can use path analysis to hand-compute the standardized 

regression weights (i.e., the standardized values for the directional arrows) of a path model by 

using the observed correlations between variables. In order to do so, one would need to follow a 

set of rules for path analysis. 

Every SEM model consists of two types of variables: exogenous and endogenous. 

Exogenous variables are those that do not have straight path arrows pointing at them, and 

endogenous variables are those that do. In other words, exogenous variables are independent 

variables that are not influenced by other variables in the model, and can be either observed or 

latent (unobserved) variables. For example, in Figure 8 above, the Math Formative Assessment 

and Reading Formative Assessment variables are exogenous, and the Math State Assessment 

variable is endogenous. An easy way to remember the distinction is to think back to functions in 

your algebra courses, in which inputs of the function are often referred to as “x” and outputs are 

referred to as “y;” thus, exogenous variables are akin to “x” variables, and endogenous variables 
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are then akin to “y” variables. We can take this example a step further to define the equation that 

describes an endogenous, or outcome variable. Figure 9 below shows a path diagram with two 

exogenous variables (V1: Reading Formative Assessment, and V2: Math Formative Assessment) 

and two endogenous variables (V3: Reading State Assessment, and V4: Math State Assessment). 

This diagram represents the relation between the variables based on theory. This is not the 

only way in which the path diagram can be expressed, rather the diagram expresses a researcher’s 

theory about how the variables interrelate. In this case, the path diagram represents a theoretical 

model in which students’ performance on a Reading Formative Assessment (exogenous variable) 

has a direct effect on their state test performance in both reading and math (both endogenous). 

Similarly, how students perform on the Math Formative Assessment (exogenous) has a direct 

effect on their state test performance in reading and math (both endogenous). Note that a 

plausible alternative model may remove the paths crossing subject 

areas (i.e., math only effects math and reading only effects reading). 
	  

Figure 9 - Theoretical path model 
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Note that all the directional arrows are labeled as paths, p, and denote where the path 

begins and where it ends. For example, p31 indicates the path that began at V1 ended at V3. Also 

note that the double-headed curved arrow labeled r12 indicates the correlation between V1 and 

V2. We can use this notation to describe the regression-type equation that expresses each 

endogenous variable as a function of all elements having a direct affect on it (where a direct 

affect is represented by a directional arrow). 

V3 = p31V1 + p32V2 + r3 and V4 = p41V1 + p42V2 + r4 

	  
One can derive these correlations by following Sewall Wright’s Standardized Path 

	  
Tracing Rules (Wright, 1934), which state that a valid path tracing: 
	  

1)  Does not loop through the same variable twice. 
	  

2)  Allows going through only one double-headed curved arrow per trace. 
	  

3)  Can go forward (with) or backward (against) a directional arrow, but once forward 

tracing has begun, it cannot then go backward. 

A path diagram implies correlations between two variables. Based on these model-implied 

correlations, the observed correlations between the variables, and the three tracing rules, we can 

use path analysis to hand-compute the standardized regression weights of a path model. The 

table below displays the observed correlations (right portion of table) along with the model- 

implied correlations (left portion of table). Note that at this point the model-implied correlations 

are the path tracing rules, which we use to compute actual values. 
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Model-Implied Correlations 	   	   Observed Correlations 	  
V1 V2 V3 V4 	   V1 V2 V3 V4 

	  

	  
	  

Table 1 – Model-implied and observed correlations 
	  
	  
	  
	  

V1 
	  

V2 
	  

V3 
	  

V4 

	  

1 
	  

r12 1 
	  

p31+ p32+ 
r12p32 r12p31 

1 
p41+ p42+ 
r12p42 r12p41 

0 1 

	  

V1 
	  

V2 
	  

V3 
	  

V4 

	  

1 
	  

.48 1 
	  

.67 .47 1 
	  

.55 .54 .67 1 
	  

To illustrate an example, let’s decompose the paths from V1 to V3; there are two ways 

we can do this.  We can go directly from V1 to V3 (p31), and we can go from V1 through V2 to 

V3, in which case we multiply the two separate paths (r12p32). To get the entire path for V1 to 

V3, we add the paths of the two tracing methods together to get p31 + r12p32. We can now use a 

series of algebraic equations to solve for each of the path, p, coefficients. As an example, we use 

just two of the equations to derive p41 and p42. We begin by setting the results of our path tracing 

rules (i.e., model-implied) equal to the observed correlations. 

	  

Given: (a) p41+ r21p42 = .55  and 
(b) p42+ r21p41 = .54 

	  

1) p41 + .48p42 = .55 given by the observed correlations 
	  

2) p41 = .55 – .48p42 rearrange the terms 
	  

3) p42 +.48(.55 – .48p42) = .54 substitute equation (a) into equation (b) 
	  

4) p42 + .26 – .23p42 = .54 solve for p42 
	  

5) .77p42 = .28 
	  

6) p42 = .36 
	  

7) .36+.48p41 = .54 substitute solution for p42 into equation (b) 
	  

8) .48p41 = .18 solve for p41 
	  

9) p41 = .38 
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Thus, the standardized regression weight for p41 = .38 and the standardized regression 

weight for p42 = .36. Assuming the model is correct, we can state that a one standard deviation 

increase in a student’s Reading Formative Assessment (V1) leads to, on average, a .38 standard 

deviation increase in his or her state math assessment (V4), controlling for formative math 

scores. Similarly, a one standard deviation increase in the student’s Math Formative Assessment 

(V2) leads to, on average, a .36 standard deviation increase in his or her state math assessment 

(V4), controlling for Reading Formative Assessment. Thus, both the Reading Formative 

Assessment and the Math Formative Assessment are almost equal in their capacity to explain 

performance on the State Math Assessment (.38 versus .36, respectively). 

We could repeat this same procedure for both p31 and p32 to estimate the effect of the 

formative reading and math assessments on the state reading assessment. Instead, let’s compare 

our hand-calculated results to those offered by statistical software, in this case, Mplus version 

5.21 (Muthén & Muthén, 1998-2010), shown in Figure 10 below. 
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Figure 10 – Path Analysis Results 
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Note that our hand-calculated estimates for p41 and p42 are slightly different than the 

results in Figure 10. These small differences are due to rounding error (i.e., as we rounded to the 

hundredths' place, the software carries out computations to many more points past the decimal). 

There are several ways in which to interpret the results. The first is the same way in 

which we interpreted our hand-calculated results, as we interpret all regression results. For 

example, a one standard deviation increase in formative reading score (V1) leads to, on average, 

a .21 standard deviation increase in the state reading assessment (V3), holding all else constant. 

We can do this for all path coefficients, and because these results are standardized, we can 

compare the coefficients to one another. For example, it is surprising that the affect of Math 

Formative Assessment on the Reading State Assessment is greater than that of the effect of 

Reading Formative Assessment. Similarly, both formative assessments have about the same 

effect on the Math State Assessment. It is left to the researcher to theorize why this might be. 

In Figure 10, you will also note the residual variances of our endogenous variables: .50 

for state reading and .58 for state math. These are the standardized estimates for each outcome 

variable of what the model did not account for, that is, the residuals. Conversely, their inverses 
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are the estimates of what the model did account for, so that 1 – ry is the proportion of variance 

accounted for in that endogenous “y” variable. You might recognize these as R2 estimates. Thus, 

1 – .50, or .50, is the proportion of variance (50%) accounted for in state reading by the model, 

and 1 – .58, or .42, is the proportion of variance (42%) accounted for in state math test scores by 

the model. One of the potential purposes of a path model, or regression model, is to account for 

variance in the outcome variable(s). This is one indicator of how well the model “fits” the data, 

and there are other fit indices as well. One thing to note in Table 1 is that the model implies that 

there is no correlation between V3 and V4 – that the correlation equals zero. Had we theorized a 

correlation between these two endogenous variables, we would have drawn a double-headed 

curved arrow between the two. Also note that the observed correlation between V3 and V4 was 

.67, which is a fairly strong correlation. There are likely implications with fixing this correlation 

to zero, rather than specifying it in the model, and one of those implications involves model fit. 

Goodness of fit. In general, the goodness of fit (GOF) of a model indicates how well the 

theorized model aligns with the observed data. There are several GOF indicators, each taking a 

different approach to estimating model fit. The goal of testing fit is to find little difference 

between the theorized model and the empirical (found) model. This effort is opposite of typical 

hypothesis testing in which a null hypothesis is used to test the probability of finding an outcome 

listed in the alternative hypothesis. Here, when we find no difference, the theory is supported. 

One class of fit indices compares the degree of correspondence between the observed and 

model-implied variance-covariance matrices (remember, the unstandardized version of Table 1), 

and includes the model χ2 statistic (or chi-squared) and the standardized root mean squared 

residual (SRMR). The model χ2 statistic, if significantly different than zero (p < .05), indicates 
	  
that there is a statistically significant difference between the observed and model-implied 
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variance-covariance matrices, but this statistic is affected by the sample size so that the larger the 

sample the more likely it will be that significant differences will be observed, indicating poor fit. 

The χ2 statistic, though routinely reported, is not the most reliable GOF indicator because it runs 

counter to good research practice. Generally we want very large sample sizes so our observed 

data approximates normal distributions and we can more adequately estimate the standard errors 

of our estimates. With the χ2 statistic, however, large sample sizes decrease the chances of 

obtaining adequate model fit. Given these limitations, other fit indices have been developed. The 

SRMR, for example, expresses the average difference between the observed and model-implied 

correlations; generally values of .08 or less indicate adequate fit (Hu & Bentler, 1999). 

Another class of fit indices evaluates the overall discrepancy between the observed and 

model-implied variance-covariance matrices while also taking into account the model’s 

simplicity (i.e., adjusting for the number of parameters estimated). These indices represent 

improvements as more parameters with useful contributions are added to the model. Among 

them are Akaike's information criterion (AIC), Bayesian information criterion (BIC), and the 

root mean squared error of approximation (RMSEA). For the AIC and BIC, smaller values 

indicate better fit, but the magnitude is not directly interpretable. These criteria are often used to 

compare one model to another and therefore are frequently referred to as incremental fit indices. 

For the RMSEA, a value of .06 or less generally indicates adequate fit (Hu & Bentler, 1999). 

A third class of fit indices evaluates the model fit relative to a model that specifies no 

relations between the variables; these include the comparative fit index (CFI) and the Tucker- 

Lewis Index (TLI). A value greater than or equal to .95 indicates good fit for both the CFI and 

TLI. We can apply these criteria to our model presented in Figure 10 to determine how well the 

model fits the data. 
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.07 35243.64 35310.77 .47 .84 .18 

	  

	  
	  

Table 2 – Fit Indices 
χ2 

281.639 
   p < .05  90% CI .42 - .51   

We can evaluate these GOF indices based on the guidelines suggested above. The χ2
 

statistic is significant, indicating poor model fit, but again, this is dependent on the sample size 

and may not be our best indicator; in our example of formative assessments, n = 1,292 students. 

Because we are only looking at one model the SRMR value is less than .07, which indicates 

good fit. The RMSEA is much higher than .06, which indicates poor fit. We have no model by 

which to compare the AIC and BIC values, so we can ignore them here. Finally, neither the CFI 

nor the TLI are greater than .95, indicating poor model fit. Thus, as sometimes happens, we have 

conflicting GOF indicators. It is generally considered best practice to report one or more 

indicators from each class to determine model fit. Here, because most of our indices suggest our 

model fits the data poorly, the correct interpretation would be that this model does not fit the data 

well. 

To this point in the paper, we have only dealt with variables we can directly observe or 

measure. Often, however, we would like to estimate a value for an unobserved or latent variable. 

We can do so by treating multiple observed variables as “indicators” of the latent trait of interest 

in a measurement model. We can then test the adequacy of the measurement model through 

confirmatory factor analysis. 

Confirmatory Factor Analysis (CFA) 
	  

Confirmatory factor analysis (CFA), a special form of factor analysis, is used to test 
	  

whether measures of a construct are consistent with a researcher's understanding of the nature of 

that construct (or factor). CFA is a confirmatory technique to investigate the relations between 

the observed and latent, unobserved variables, here referred to as factors. Guided by theory, 
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researchers can specify the number of factors (unobserved variables), the number of observed 

variables that “load” on the factors (i.e., contribute towards), and the associated residuals. Figure 

11 below displays the theoretical framework for a one-factor CFA model, Math Ability, which is 

theorized to influence or predict students’ scores on the observed variables Number & 

Operations, Geometry, and Algebra. This figure describes the latent variable as measured by 

three observed variables, and each of the observed variables has a corresponding residual, rn. For 

the model to be identified, either the variance of the latent variable or one of the paths (or factor 

loadings) from the factor to an observed variable need to be fixed. In Figure 11, the variance has 

been fixed at 1.0 so that each path can be freely estimated. The choice of fixing a path over a 

variance is largely arbitrary and has to do in part with the research questions. If the researcher is 

interested in the unstandardized estimates of all paths then he or she may fix the variance of the 

factor. Similarly, if the researcher is interested in the unstandardized estimates of the variances 

he or she may choose to fix a path. 
	  

Just like in other forms of regression, the results from CFA can be presented in 

standardized or unstandardized form. In many cases, standardized results are easier to interpret 

because all the estimates have been placed on the same scale, and thus are directly comparable, 

so it is easier to compare the effect of each variable. In CFA, the standardized loadings are 

equivalent to the correlations between the observed variables and latent factor. Theoretical CFA 

models are shown in Figure 11 for both reading and math. For reading, the model displayed has 

negative degrees of freedom. 

For models to be estimated they must have greater than or equal to 0 degrees of freedom. 

The degrees of freedom of any SEM model are equal to the number elements in the variance- 

covariance matrix used to estimate the model minus the number of parameters being estimated – 
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regression weights, variances, and covariances. The formula for calculating the number of 

elements in the variance-covariance matrix is m(m + 1) / 2, where m = the number of observed 

variables (i.e., the number of boxes in the path diagram). In the theoretical reading model 

displayed in Figure 11 below there are two observed variables and thus 2(2 + 1) / 2 = 3 elements 

in the variance covariance matrix. There are 7 total parameters – 3 variances and 4 path 

coefficients – but 3 of these are fixed at 1.0. There are thus 4 parameters to be estimated and the 

model, as displayed, has 3 – 4 = -1 degrees of freedom. 

To make the model estimable, we must place further constraints on the model to obtain 

more degrees of freedom. One way to do this is to constrain the residual terms to be equal, thus 

necessitating the estimation of one residual parameter instead of two. The approach is less than 

ideal and when employed in the current model led to results that suggest the model does not 

adequately measure students' reading ability. Generally one should aim to have at least three 

observed variables for any CFA model, which allows for six degrees of freedom and greater 

flexibility in specification. 

Note as well that model fit indices are only produced when the model is “over identified”, 

which means the model has at least 1 degree of freedom. Models with zero degrees of freedom 

are generally referred to as “just identified”. Just identified models have only one possible 

solution, and thus always fit the data perfectly because there are no other possible solutions. 

Over identified models have multiple possible solutions, and thus must be evaluated for how 

well the converged solution fit the observed data. Model fit is a fundamental concern of SEM 

and CFA models, and when the model is just identified the fit of the model cannot be evaluated. 
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Figure 11 Theoretical One-Factor Confirmatory Factor Analysis, Reading 
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Given the problems in estimation with the reading model, we present here only the results 

for math, which had 6 – 6 = 0 degrees of freedom. The results for the math model are displayed 

in Figure 12 below. The correlations (loading) between the latent Math Ability factor and the 

Number and Operations, Geometry, and Algebra factor indicators are relatively large at .72, .68, 

and .72, respectively. The Math Ability latent factor is thus quite strongly associated with the 

three observed variables. In other words, the observed variables are adequately measuring our 

targeted latent construct. The residual variances (unexplained variances) of the Number and 

Operations, Geometry, and Algebra factor indicators were .48, .49, and .52, respectively. We can 

determine the amount of variance “explained” or “accounted for” in each latent factor by 

computing the R2 value, which is equal to 1- residual (or, the unexplained variance). Thus, in our 
	  
model Math Ability explained 52%, 51%, and 48% of the variance in students’ responses to the 
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Number and Operations, Geometry and Algebra, tasks, respectively. Fit statistics could not be 

produced due to the model being just identified. 

Figure 12 One-Factor Confirmatory Factor Analysis Results, Math 
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Researchers applying CFA are also able to test multiple latent factors simultaneously. For 

example, if we have two latent factors, Math Ability and Reading Ability, we can test both factors 

under one CFA model. Figure 13 below shows the results of a two-factor CFA model, where the 

correlation between the latent variables is estimated, represented by the double-headed curved 

arrow between the latent factors. The two-factor CFA model is interpreted just like a one-factor 

CFA model. In this example, the correlation between Math Ability and Reading Ability is 0.80, 

which indicates a strong correlation between latent factors. The model has 15 – 11 = 4 degrees of 

freedom and thus was over-identified and fit statistics could be calculated. Results suggest the 

model fits the data quite well, with a CFI of .996, TLI of .990, RMSEA of .038, and an SRMR of 

.012 – all meeting the Hu and Bentler (1999) fit criteria described in the previous section. Again, 

keep in mind that models should be based on theory, and specify the number of factors, the 
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number of observed variables within factors, the correlation(s) between latent factors, and any 

residual before the parameters are estimated. 

Figure 13 –Two-Factor Confirmatory Factor Analysis Results 
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CFA generally requires large sample sizes to adequately estimate parameters. When 

running CFA, many different fit statistics are used to help determine whether the model provides 

adequate fit for the data. Many of the rules of interpretation of model fit and model modification 

in either path analysis or SEM apply equally to CFA (e.g., RMSEA, SRMR, CFI, TLI, AIC, 

BIC, or ABIC; note that all fit statistics and interpretations are discussed in the Path Analysis 

section). If the fit statistics are acceptable, the parameter estimates can be examined. It is 

important to note that the parameter estimates should not be interpreted if the model does not fit 

the data well, as the individual path coefficients cannot be trusted if the model as a whole does 

not fit the data. Additionally, correlations between the factors should be checked to see how the 

factors relate to each other. If correlations are sufficiently high, consolidating the corresponding 
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factors into a single factor should be considered, because the factors overlap to such an extent 

that they may be redundant. 

Structural Equation Modeling (SEM) 
	  

CFA is frequently used as a first step to assess the proposed measurement model in a full 

structural equation model (SEM). In the context of SEM, the CFA portion of the model is 

referred to as “the measurement model,” while the relations between variables (with directional 

arrows) is called “the structural” portion of the model. One cannot estimate directional relations 

under the CFA model; in general, SEM is used when researchers would like to test the relations 

between several observed and unobserved variables. Although researchers can apply regression, 

path analysis, or CFA to many research problems in education and psychology, SEM is by far 

the most flexible. In many cases, regression analysis, factor analysis, and path analysis represent 

special cases of SEM; however, SEM is more general than regression, because, in particular, a 

variable can act as both an independent and dependent variable in the same model. CFA is 

distinguished from SEM by the fact that the factors are only related (double-headed curved 

arrows) and not theorized to directly affect each other (directional arrows). Additionally, 

researchers using SEM can model mediating variables, structural residuals, and multiple 

dependent variables (see Baron & Kenny, 1986; Kline, 2010). 

The structure of full SEM has two main parts, both of which we have been discussed in 

isolation: a measurement model (CFA) and a structural model (path analysis). The measurement 

model is a multivariate regression model (multivariate generally implies multiple variables being 

analyzed simultaneously) describing the relation between a set of observed dependent variables 

(observed variables) and a set of continuous latent variables (unobserved, theoretical constructs). 

The observed dependent variables are often referred to as factor indicators and the continuous 
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latent variables are referred to as factors. In SEM, both exogenous (independent, or “upstream”) 

and endogenous (dependent, or “downstream”) variables can be observed or unobserved, 

depending on the model being tested. Within the context of structural modeling, exogenous 

variables represent constructs that theoretically influence other constructs under study and are 

not influenced by other factors in the model. Endogenous variables are theoretically influenced 

by exogenous variables, and, depending on the model specified, other endogenous variables in 

the model. 

As an example of a full SEM model, we can easily replace the observed math and reading 

variables in Figure 9, with the measurement models displayed in Figures 11 and 12. This model 

is shown in Figure 14 below. This figure displays the theoretical framework with two correlated 

unobserved (latent) variables. Analogous to the model displayed in Figure 9, the path diagram 

indicates that students’ Reading Ability (exogenous variable) has a direct effect on their state test 

performance in both reading and math (both endogenous). Similarly, students’ Math Ability 

(exogenous variable) has a direct effect on their state test performance in both reading and math 

(both endogenous). Perhaps the primary advantage of the model displayed in Figure 14 over the 

model displayed in Figure 9 is that, because each indicator of the latent factors already includes a 

residual term, the latent factor is theoretically free of measurement error (i.e., the measurement 

error has already been accounted for). Thus, the latent factors may more adequately represent 

students’ math or reading ability, which is being used to explain variance in the state assessment 

scores, over the raw observed score. In sum, full SEM can be viewed as a combination of path 

analysis and CFA. 
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Figure 14 Theoretical Structure Equation Model 
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The results of the SEM model showed that all fit indices were relatively good. The CFI 

was .972, the TLI was .951, the RMSEA was .082, and the SRMR was .023. The model thus fits 

the data adequately, but is not great. The standardized results are presented in Figure 15 below. 

The correlation between the two latent factors was large at .81, indicating that students Reading 

and Math Abilities were strongly related. The standardized factor loading (correlations) between 

the Math Ability latent factor and the Number and Operations, Geometry, and Algebra indicators 

were quite large at .68, .70, and .69, respectively. Thus, the Math Ability latent factor and the 

three observed variables were strongly associated. The correlations between the Reading Ability 

latent factor and Fluency and Comprehension are also large at .87 and .76, respectively, again 
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indicating a strong association. The residual variances of the Number and Operations, Geometry, 

Algebra, Fluency, and Comprehension were .54, .51, .53, .25, and .43, respectively. 

The interpretation of standardized SEM results is similar to the interpretation of 

standardized path analysis results; each one standard deviation increase in Math Ability 

produced, on average, a .96 and .45 standard deviation increases in State Math Assessment and 

State Reading Assessment scores, respectively, holding all else constant. Because these results 

are standardized, the coefficients can be directly compared. These results indicate that Math 

Ability has a much stronger effect on State Math Assessment than on the State Reading 

Assessment (.96 vs. .45). This is reasonable, as we expect students with higher mathematical 

competency to perform higher on the state math assessment, but we might not predict the same 

about the effects on State Reading, given that the skills are not closely related. 

For reading, a one standard deviation increase in Reading Ability produce, on average, a - 
	  
.14 and .41 standard deviation increase in State Math Assessment and State Reading Assessment 

scores respectively, holding all else constant. The effect of Reading Ability on the State Reading 

Assessment is perhaps not as strong as we expected (.41), given that each variable represented 

similar constructs. On the other hand, there is a negative effect of Reading Ability on the State 

Math Assessment (-.14), which is surprising. Interestingly both Math Ability and Reading Ability 

have a similar effect on State Reading Assessment (.45 vs. .41). Also, the residual variances of 

State Math Assessment and State Reading Assessment is .27 and .32, respectively, indicating that 

our model explains a good proportion of variance in these outcomes measures (.73 and .68, 

respectively). 
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Figure 15 – Full Structure Equation Modeling Results 
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Conclusion 

	  
	  

Deeper inspection of the measures used, the sample investigated, or other mediating or 

moderating variables could help to explain some of the unexpected results. However, the primary 

purpose of this paper is to illustrate the technique of SEM and its interpretation through an 

example. With that in mind, it is perhaps most helpful to view the differences in the model 

results between Figure 10 and Figure 15. Although essentially the same data are used, and the 

theoretical framework is identical, different statistical models are specified and the resulting 

inferences based on each model are substantively different. The differing results highlight the 

importance of correct model specification. For instance, while the relation between the formative 

reading assessment and the state reading assessment is modest in the path analysis (.38), the 
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relation is actually slightly negative in the full SEM model (-.14). Further, while the negative 

relation is difficult to interpret, the model fit statistics suggest that the full SEM model more 

adequately represents the observed relations among the variables. It should also be noted, 

however, that only one measure of reading competency is included in the path analysis model, 

while two are included in the full SEM model, making comparisons between the two models 

somewhat tenuous. Further, the results of our reading-only CFA is not great and perhaps suggest 

that we may need to reconceptualize our theoretical reading model before applying it to a more 

complex SEM model. That is, perhaps some of the unexpected results are due to poor precision 

in our measurement of the reading ability latent construct. The math measures remain the same 

between models, with the formative assessment simply representing the sum of the three factor 

indicators. 

The flexibility of SEM offers great potential for researchers to model complex relations. 

To keep this report concise, we concluded with a relatively simple full SEM model. However, a 

wide range of theoretical models of considerably greater complexity can readily be specified. 

Perhaps the greatest strength of SEM is that it allows researchers to not only theorize about the 

ways in which variables interrelate, but to explicitly test the relations. In the end, SEM affords 

the researcher a rich basis from which to theorize and test the adequacy of complex models 

representing the real world. In turn, this flexibility helps us better understand and provide 

solutions to pressing problems. 
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