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Abstract	  
	  

Longitudinal	  data	  analysis	  in	  education	  is	  the	  study	  growth	  over	  time.	  	  A	  

longitudinal	  study	  is	  one	  in	  which	  repeated	  observations	  of	  the	  same	  variables	  are	  

recorded	  for	  the	  same	  individuals	  over	  a	  period	  of	  time.	  	  This	  type	  of	  research	  is	  

known	  by	  many	  names	  (e.g.,	  time	  series	  analysis	  or	  repeated	  measures	  design),	  each	  

of	  which	  can	  imply	  subtle	  differences	  in	  the	  data	  or	  analysis,	  but	  generally	  follows	  

the	  same	  definition.	  The	  purpose	  of	  this	  paper	  is	  to	  provide	  an	  overview	  of	  

longitudinal	  data	  analysis	  in	  education	  for	  practitioners,	  administrators,	  and	  other	  

consumers	  of	  educational	  research,	  focusing	  on:	  the	  purposes	  of	  longitudinal	  data	  

analysis	  in	  education,	  some	  of	  its	  benefits	  and	  limitations,	  and	  the	  various	  analyses	  

used	  to	  model	  student	  growth	  trajectories.	  

	  
	  



A Primer on Longitudinal Data Analysis in Education 
 
Longitudinal data analysis in education is the study of student growth over time. A 

longitudinal study is one in which repeated observations of the same variable(s) are recorded for 
the same individuals over a period of time. This type of research is known by many names (e.g., 
time series analysis or repeated measures design), each of which can imply subtle differences in 
the data or analysis, but generally follows the same definition. The purpose of this paper is to 
provide an overview of longitudinal data analysis in education for practitioners, administrators, 
and other consumers of educational research, focusing on: the purposes of longitudinal data 
analysis in education, some of its benefits and limitations, and the various analyses used to 
model student growth trajectories. 
 
1. Purposes  

Longitudinal data analysis, also known as growth modeling and growth curve analysis, 
has as its primary purpose the measurement of change, or trajectories. Growth trajectories refer 
to both the intercept (initial or starting point) and the slope (growth, or change over time). There 
are two general objectives that are addressed by longitudinal data analysis: (a) how the outcome 
variable changes over time, and (b) predicting or explaining differences in these changes (Singer 
& Willett, 2003). The first purpose is more narrow, and looks at the description of the functional 
form of growth; that is, is growth linear, or non-linear. It is important to note here that growth 
can increase and/or decrease, accelerate and/or decelerate, and that an important part of 
longitudinal data analysis is modeling the correct functional form of growth.  

The second purpose is much broader than the first, and addresses the relation between the 
trajectory and independent variables of interest (e.g., instructional program, public vs. private 
schooling, absences, socioeconomic status). In the coming sections, examples of these two 
purposes are provided, and different analyses that help answer questions related to these 
purposes are illustrated. Specific longitudinal educational data, described next, is used to help 
elucidate these purposes. 
 
1.1 Description of Data 

The following longitudinal data are used to help illustrate examples about growth and 
analyses throughout this paper. These data come from a larger study conducted in 2009-2010 to 
develop a comprehensive reading and mathematics assessment system. The sample includes 186 
students in grade 4 who were administered eight oral reading fluency (ORF) measures over one 
academic year. Measures were administered in October, November, December, January, 
February, March, April, and May. Students with ORF results from at least four testing occasions 
were included in the sample.  

For the ORF administration, students were shown a narrative passage (approximately 250 
words) and were given 60 seconds to “do their best oral reading.” The assessor followed along as 
the student read, indicating on the test protocol each word the student read incorrectly (producing 
the wrong word or omitting a word). If a student hesitated for more than three seconds, the 
assessor provided the correct word, prompted the student to continue, and marked the word as 
read incorrectly. Student self-corrections were marked as correct responses. After one minute, 
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the assessor marked the last word read and calculated the total number of words read correctly 
(wcpm), by subtracting the number of incorrect words from the total words read.1 
 
1.2 Examples of Applied Longitudinal Data Analysis in Education 

Many teachers and special educators use students' work, test scores, and products to 
monitor skill development over time. Working within a response to intervention (RTI) 
framework, teachers are also often expected to monitor student progress to identify discrepancies 
in academic performance levels and trajectories between students and groups. In this context, 
and in our example data described in section 1.1, data can be students’ scores on curriculum 
based measures (CBM), and student growth over time can be used to evaluate the effectiveness 
of instruction. These approaches often involve repeated performance sampling, graphic displays 
of time-series data, and qualitative descriptions of performance, which allow inferences to be 
made about both inter-individual (between-student) differences and intra-individual (within-
student) improvement (Deno, Fuchs, Marston, & Shin, 2001). 
 
1.2.1 Single-subject research 

Perhaps the most basic application of longitudinal data analysis in education is single-
subject research. In this type of experimental research individuals serve as their own control, 
meaning that comparisons are made to the individual's previous performance (Gast, 2010). In 
single-subject research, data for each individual are presented on a separate line graph so that 
data are collected repeatedly, graphed regularly, and analyzed frequently to make data-based 
decisions on an on-going basis (Gast, 2010). Single-subject research is considered experimental 
because the design includes a baseline phase that provides repeated measurement prior to an 
intervention to establish a pattern that can be used to compare post-intervention change in 
performance (Gast, 2010). In general, the researcher is attempting to qualify the effectiveness of 
the intervention based on a comparison to baseline data, which can be done with one or multiple 
individuals. It is important to note that single-subject research is a separate type of research from 
most of those discussed here, largely because there is no estimation of parameters, in other 
words, it is a nonparametric approach. Nonparametric generally means an approach that does not 
estimate parameters based on a population. Its counterpart, parametric, describes most statistical 
analyses that estimate parameters (e.g., regression coefficients, or growth trajectories) based on a 
larger population. 
 
1.2.2 Describe growth 

As mentioned, one purpose of longitudinal data analysis is to describe the functional form 
of growth. Here, functional forms of growth are placed into three categories: linear, polynomial, 
and piecewise. The most parsimonious, or simple, form of growth is linear growth. In linear 
growth models, growth is assumed and constrained to change at a constant rate over time, either 
increasing (a positive slope parameter) or decreasing (a negative slope parameter).  

The second category of functional form is polynomial growth models, those that include 
exponential growth rates. Although these models encompass all possible orders of polynomial 
growth, longitudinal data analysis in education typically only includes quadratic and cubic 
growth. (Note that a polynomial growth model must include all growth terms prior to the final 
order, so that quadratic models include linear and quadratic terms, and cubic models include 
                                                        
1 Note that ORF measures were developed as part of the easyCBM© progress monitoring and assessment system 
(Alonzo, Tindal, Ulmer, & Glasgow, 2006).  
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linear, quadratic, and cubic terms) Using the data described in section 1.1, time is modeled in 
months, from 0-7. To include a quadratic growth term, each unit of time is squared when added 
to the equation (i.e., 0, 1, 4, 9, 16, 25, 36, 49), and for a cubic growth term each unit of time is 
cubed when added to the equation (i.e., 0, 1, 8, 27, 64, 125, 216, 343). This allows the modeled 
growth to accelerate and/or decelerate as a function of time. 

The last category of functional form is piecewise growth models, those that include 
different slopes for different time periods. An example of piecewise growth in education is data 
across two consecutive years, where separate estimated slopes for year 1, for summer, and for 
year 2 are desired. This model would have three slope parameters, each representing a different 
period of time (with a theoretical rationale about why one would expect different slopes for each 
time period). 

In education, it is often assumed that growth is linear, but this assumption should always 
be supported by empirical evidence and statistical tests. The remaining purposes of longitudinal 
growth analysis in education discussed here relate to the second purpose of exploring the relation 
between the growth trajectory and independent variables of interest. 
 
1.2.3 Predict and Model Variance of Trajectories 

Perhaps the most primary purpose of longitudinal growth analysis in education is to 
explore the heterogeneity (difference) in change between students, and moreover, to determine 
the relation between predictors and the shape of each student’s growth trajectory (Singer & 
Willett, 2003, p. 8). In other words, are there differences in where students begin (the intercept) 
and how students grow (slope), and if yes, what variables explain these differences? For those 
more familiar with some principles of statistics, these can also be analyzed in terms of the 
variances of the intercept and slopes, and if there is significant variance in these, what variables 
account for, or explain, these variances? For example, differences in ORF intercept and within-
year ORF growth between students in general education and students receiving special education 
services can be explored (in which case the predictor is a dichotomous variable that indicates 
special education status or not).  
 
1.2.4 Trajectories to Predict an Outcome 

Using advanced statistical analyses, it is also possible to use growth trajectory parameters 
to predict distal outcomes. Following the example, intercept and slope estimates can be used to 
predict year-end reading achievement as measured by scores on the year-end state reading test. 
The relation between fall ORF skill (intercept) and year-end reading, and the relation between 
within-year ORF growth and year-end reading can also be estimated. The two relations can be 
compared to determine which is a better predictor of year-end reading: where one starts or how 
one grows throughout the year?  
 
1.2.5 Accountability  

One last example of a purpose of longitudinal data analysis in education is accountability. 
In the last example (section 1.2.4), the year-end state reading test scores were used as an 
outcome variable. These tests, in reading and math in grades 3-8 and content specific subjects in 
high school, are administered as part of the No Child Left Behind Act (NCLB, 2002). NCLB 
legislation requires states to implement accountability systems based on student test scores to 
track Adequate Yearly Progress (AYP); see section 3.2.1 for further discussion. States have used 
cross-sectional design to track AYP, a design that involves the observations of a population at 
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one specific point in time, for example, observing grade 3 over several years in which each year 
a different group of student performance is analyzed. Currently, it is becoming more popular for 
states to use longitudinal data analysis, specifically, value-added approaches to analyze 
accountability. Value-added approaches consider all students’ initial skill level in addition to 
their growth over time in order to more fairly account for progress. In other words, value-added 
approaches attempt to separate the effects of teachers and schools from those effects beyond the 
control of the education system (e.g., family background or SES), and hold states (or districts, 
schools, teachers) accountable only for the variables related to education. Please see section 3.2.2 
for further discussion of value-added models. 
 
2. Data & Assumptions 

In this section some of the principles and assumptions of both longitudinal data and 
analysis are discussed. There are a number of data considerations when conducting or reviewing 
a longitudinal analysis in education, including the form of the observed data, the functional form 
of growth, and the number and schedule of occasions. 
 
2.1 What Does the Observed Data Look Like? 

As mentioned, one purpose of longitudinal data analysis is to describe the functional form 
of growth, or to determine which of the three categories of form (linear, polynomial, piecewise) 
best fit the data (section 1.2.2). This can be done in several ways, including an “eye-ball” 
inspection of the observed data. Note that the “observed” data are those that can be calculated 
directly from the data for each occasion (e.g., means, or averages, at each occasion), and the 
“estimated” or “predicted” line represents the intercept and slope as estimated by a statistical 
model (more on statistical models in section 3). 

In an eye-ball inspection of the observed data, the observed data are those means that can 
be calculated directly from the data for each occasion. In the grade 4 ORF example there are 
eight testing occasions, and the sample ORF means of each occasion can be graphed. Figure 1 
displays these observed means for each occasion. This graphic representation of the observed 
data helps supports the next step, deciding on the functional form of the data. Eye-balling these 
data, it appears growth could be quadratic, decreasing over time, or even cubic, with decreasing 
growth then increasing at the end of the year. 
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Figure 1. Observed (sample) means of ORF scores across each occasion. 
 
2.2 What is the Functional Form of Growth? 

Rigorous statistical tests are more often used to determine the functional form of the data 
when statistical analyses are involved. These tests are used to determine (a) which functional 
form best fits the data, based on a statistically significant or meaningful result, (b) whether the 
parameter associated with a growth term (e.g., quadratic, cubic) are statistically significantly 
different from zero, suggesting the parameter is a good addition to the model, and (c) whether the 
variance associated with a growth term is statistically significantly different from zero, 
suggesting the researcher can add predictors to explain that variance.  

Figure 2a shows the predicted linear mean ORF growth (i.e., estimated) across time. 
Here, you can see that the growth is constrained to change at a constant rate over time. Figure 2b 
shows the predicted quadratic mean ORF growth across time. In this graph, you can see the 
predicted growth rate increases initially and then decelerates over the course of the school year. 
This is an example of quadratic growth in which change decelerates over time (it can also 
accelerate, in which case growth would exponentially increase over time). Figure 2c shows the 
predicted cubic mean ORF growth, and here you can see predicted growth rate increases to 
begin, decelerates around mid-year, and then increases at the end of the year. This is an example 
of cubic growth, in which there are two bends in the growth; in this case, decelerating and then 
accelerating. The opposite can also be modeled, accelerating growth followed by decelerating 
growth.  
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a) 

 
b)  

 
c) 

 
Figure 2. (a) Predicted (estimated) linear mean ORF growth across time. (b) Predicted quadratic 
mean ORF growth across time. (c) Predicted cubic mean ORF growth across time. 

6



 
The three graphs in Figure 2 can be compared to the mean observed growth of the sample 

displayed in Figure 1, and statistical analysis can help determine which model best fits the data. 
Simply by eye-balling the grade 4 ORF trajectories, one might speculate that the cubic model in 
Figure 2c would best fit the observed data in Figure 1. Once the functional form of growth is 
selected, the variance in ORF of the intercept and slope can be explored; then, meaningful 
predictors can be added to explain these variances. 
 
2.3 Testing Occasions 

The importance of exploring the functional form of the longitudinal data, and a warning 
about the assumption of linear growth without empirical analysis has been emphasized. Given 
this context, it is not always true that one can model all three categories of functional form. Table 
1 provides a guide to the exponential form, points of inflection, and minimum number of 
occasions needed for specific growth models. The exponential form refers to the exponent for the 
highest order polynomial in the equation. (Remember that a polynomial growth model must 
include all polynomial terms prior to the final order.) The points of inflection refer to the number 
of curves or bends in the predicted growth slopes. Finally, the minimum number of occasions 
needed specify how many occasions (i.e., observations, time points, or waves of data) are needed 
to statistically model a specific functional form. Note that for a longitudinal data analysis (linear, 
polynomial, or piecewise), one needs at least 3 occasions to model growth; having two occasions 
allows one to look only at gain, not growth as defined in this paper.  

Table 1 only lists functions up to a cubic growth model, however, one could include as 
many exponents and points of inflection as desired, as long the minimum number of occasions is 
sufficient; the numbers in the columns simply continue in sequential order. Linear growth can be 
modeled with 4 or 5 occasions, or quadratic growth with 8 or whatever occasions, but there is a 
minimum for each form category. 

Note that piecewise growth is not listed in Table 1, but for each piece of growth, one 
needs at least 3 occasions. Referring back to the earlier example of growth over two school years 
including the summer between (section 1.2.2), you would need at least 9 occasions (3 for year 1, 
3 for summer, and 3 for year 2) to fully estimate a linear slope for each piece separately, and 
more occasions to fully estimate polynomial growth for each piece.  
 
Table 1. Number of occasions needed for different functional form growth models. 

Function Exponential Form Points of Inflection 
Minimum 

Occasions Needed 
Linear ^1 0 3 
Quadratic ^2 1 4 
Cubic ^3 2 5 
 
2.4 Timing of Occasions 

The metric for time is an important consideration, and must be sensible (Singer & Willett, 
2003). Think of the scale of time as the x-axis of a graph showing growth, where the y-axis is the 
outcome variable. In Figures 1 and 2, months are used as the time metric, but this can be changed 
to suit the purpose and data structure. Time can be measured in terms of age or calendar, for 
example years, months, weeks, days, or hours.  But units other than time can be represented on 
the x-axis. Take, for example, a car warranty, where a car is guaranteed based on the number of 
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months or on the number of miles. In this example, the x-axis can either be time in months, or 
miles driven, which in a sense is a proxy for time. 

In addition, data can be collected on a fixed schedule, in which all individuals are 
observed at the same time and occasions, or on a flexible schedule, in which individuals are 
observed at different times on different occasions (Singer & Willett, 2003). Individually-varying 
occasions demands more complex statistical models than does a fixed schedule, but can still be 
explored. The timing of the occasions relates to the degree to which the data is missing or 
incomplete (missingness), which is discussed in section 2.6. 
 
2.5 Same Measure Over Time 

A final assumption about longitudinal data analysis concerns the outcome variable, which 
must be a continuous, psychometrically robust variable whose values change systematically over 
time (Singer & Willett, 2003, p. 13). A psychometrically robust variable has strong precision of 
measurement, meaning strong reliability and small error of measurement. In general, the 
outcome must represent the same intended construct and maintain the same scale at every 
occasion. Note that one test may not necessarily represent the same construct at every age, and 
the amount of the outcome refers to the distance between scores being constant across time in 
order to measure growth at all. 
 
2.6 Missing Data 

Similar to other types of data analysis, missing data is a ubiquitous problem for 
longitudinal data analysis. Missing data is problematic for many reasons, including: (a) 
decreasing the representativeness of a sample (e.g., dropouts could be systematically different 
from non-dropouts in a study), (b) loss of statistical power to detect meaningful effects, (c) 
producing biased or inaccurate results, and (d) negatively affecting both internal and external 
validity of the study. 

Missing data occurs in various patterns, such as participants refusing to participate, 
dropping out in the middle of a study (i.e., attrition), participating on selected occasions (i.e., 
participants are involved in some occasions but not others), and providing partial response by 
either omitting items, or answering some parts/types of items and not others. 

Despite the challenges of missing data, there are statistical methods to control for missing 
data. For example, one can determine if the missing data problem can be ignored because the 
missingness is random and unrelated to other variables (for more information see Little & Rubin, 
1987). Other ways of handling missing data include predicting, deleting, or imputing the missing 
values. In addition, some statistical software uses an estimation technique (i.e., maximum 
likelihood) that allows the inclusion of all students who have been observed on at least one 
occasion. It is important to note, however, that some of these methods are more complex and 
advantageous than others, and hold caveats. 
 
2.7 Advantage over Gain Scores 

Research has often addressed student change to understand how each student’s learning 
or knowledge changes as an increment. That is, the difference between pre- and post-test or 
before and after an intervention; in other words, observing a student’s initial score and 
subtracting it from the student’s final score to obtain a measure of change from beginning to end. 
This method does not account for change as a continuous process, and there are limitations to 
this measurement of change (Willett, 1994). Analysis involving two occasions can result in a 

8



misleading estimate of change, because there is insufficient data to measure important details of 
students’ learning trajectory over time. Changes may be occurring over time with a meaningful 
trajectory that can be explored by researchers, but two occasions do not provide an adequate 
method for studying growth (Willett, 1994). 
 
3. Purposes / Analytic Methods 
 In this section two general purposes of longitudinal data analysis in education are 
discussed: describing or modeling growth and accountability. Several ways to represent growth 
graphically, including methods of exploratory descriptive growth are provided, as are several 
advanced statistical techniques for modeling growth involving Hierarchical Linear Modeling 
(HLM) and Structural Equation Modeling (SEM). 
 
3.1 Exploratory Descriptive Growth 
 The graphic representation of growth using individual empirical growth plots and 
individual empirical growth plots inter-individual differences in growth is provided here. 
 
3.1.1 Individual Empirical Growth Plots 

According to Singer and Willett (2003), one of the simplest ways to observe change in 
individuals over time (i.e. growth) is to visually inspect individual empirical (or observed) 
growth plots. These plots are temporally sequenced graphs of individual empirical growth 
records (i.e., recorded data), and can be created using many major statistical packages, including 
SPSS (SPSS Inc., 2010), HLM (Raudenbush, Bryk, Cheong, Congdon, & du Toit, 2010), and 
Mplus (Muthén & Muthén, 1998-2007). Because viewing individual plots may be difficult to 
detect differences and similarities in growth, it is recommended to view sets of plots in a small 
number of panels. Each individual’s empirical growth can be summarized using a trajectory 
applying either a nonparametric or a parametric approach. Here, nonparametric refers to 
smoothing trajectories without imposing a specific functional form, and parametric refers to 
trajectories that are summarized using a functional form such as linear, quadratic, or some other 
form of growth (for more information, see Chapter 2, Singer and Willett, 2003). It is important to 
note that these techniques are exploratory approaches to examining growth. In other words, these 
approaches do not offer statistical tests of significance, or rigorous methods by which to make 
predictions about future performance or to explain why trajectories occur as they do for different 
students.  

Figure 3 shows empirical growth plots of eight grade 4 students in our data. Exploring 
individual plots can provide initial growth information. For example, these eight plots suggest 
that the students generally have an initial ORF score between 70 and 160. There are some 
students that start with a much higher initial ORF score, and some with a much lower score. 
Across the 8 time points, some students show more gradual positive growth in the middle of the 
year and then a slight decrease, some have growth patterns that are relatively stable, and others 
have growth that goes up and down throughout the year. 
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Figure 3. Empirical growth scatter plots of eight grade 4 students on the ORF measures in one 
year. 
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Figure 4 shows the nonparametric, smoothed growth trajectories (i.e. no specific 
functional form was imposed) of the same eight students. In other words, a smooth line was used 
to connect the eight time points for all eight students. When examining plots like this, it is 
important to consider the elevation or decline, shape, and slope of each curve. 
 

 
Figure 4. Smooth nonparametric individual growth plots of eight grade 4 students on the ORF 
measures in one year. 
 
3.1.2 Inter-Individual Differences in Growth 

To examine whether all individuals grow similarly or differently, inter-individual growth 
trajectories must be examined (i.e., differences in growth between students, or how trajectories 
vary across students). One way to examine this is to plot the set of smoothed individual 
trajectories onto a single graph. Figure 5 shows the observed graph plot of 50 randomly selected 
students in the grade 4 ORF data and the fitted average linear growth trajectory for the group. 
Note that the average growth trajectory in this plot is primarily used as a comparison with the 
observed individual trajectories, and the slope was constrained (or forced) to be linear, increasing 
at a constant rate over time. The “average” trajectory in red suggests that students’ ORF scores 
increase gradually across the academic year, with an average beginning ORF score of 131 words 
correct per minute (wcpm) and an average growth of 3.15 wcpm per month. However, the 
graphed individual observed trajectories in black suggest that there is substantial inter-individual 
difference in growth across the year, both at the intercept and slope. More specifically, some 
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students displayed fluctuating growth, some fairly positive linear growth, and some quadratic 
growth.  

Figure 5. A collection of observed trajectories of 50 random grade 4 students on the ORF 
measures in one year, with an OLS average growth trajectory in red. 
 

It may be also useful to explore the relation between growth and student characteristics 
that can be time-invariant (i.e., constant over time), such as ethnicity, or whether a student 
receives special education services (SPED).2  Figure 6 shows the observed graph plot of 40% (73 
students) randomly-selected students in the grade 4 ORF data separated by SPED status (blue 
lines represent students receiving general education instruction (GenED), and red lines represent 
students receiving SPED services). The observed trajectories for SPED students are generally 
lower than GenED students in both the intercept and growth across the year. Generally, plots like 
this are used to examine systematic differences in pattern. 
 

                                                        
2 Special education status is considered to be constant over time in this example, as no student in the sample stopped 
receiving special education services during the year. Quite often, however, students demonstrate many different 
patterns of entering and exiting special education, which is an example of a time-variant variable. 

12



 
Figure 6. A collection of observed trajectories of 73 randomly selected grade 4 students on the 
ORF measures in one year, separated by the predictor SPED. GenED = 0 (blue) represents 
students receiving general education and SPED = 1 (red) represents students receiving special 
education services. 
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3.2 Modeling Growth 
Several advanced statistical techniques involving Hierarchical Linear Modeling (HLM) 

and Structural Equation Modeling (SEM) are discussed here. 
 
3.2.1 Regression 

Regression is a common parametric model used to summarize individual empirical 
growth trajectories. Regression is used to determine the relation between independent and 
dependent variables for the purpose of either (a) trying to best predict of the outcome variable, or 
(b) identifying variables, and their relative importance, in explaining the outcome variable. Using 
the grade 4 ORF data, students’ data are plotted in a graph, with time on the x-axis and ORF on 
the y-axis. A line is then applied to the data, as in Figure 5, that represents the average intercept 
and slope for all students, following the equation: y = i + bX + e, where y is the outcome 
variable, i is the average intercept, b is the slope, or average growth over time, X is the 
independent time variable, and e is the residual, or the difference between the line and the 
observed data (different for each student). In general, regression allows the researcher to explore 
hypotheses about predicting or explaining initial status and growth, and estimate the relation of 
predictors to the outcome while controlling for the effects of other predictors. For example, one 
could explore the effect of receiving special education services on students’ ORF trajectories 
while controlling for students’ sex, socioeconomic status, and ethnicity. 
 
3.2.2 Variance at Different levels 

An advantage of longitudinal data analysis using more advanced statistical techniques 
(e.g., HLM and SEM, see below) is that differences in growth within and between students can 
be explored. One would expect there to be a significant amount of variance within student 
growth trajectories, because the scores are changing across time.  Once one has selected the most 
appropriate functional form, that is, the differences “within-students,” one can explore different 
time-varying variables that may influence growth. These are variables that are not constant over 
time, rather change as a function of time. For example, students’ sex is constant over time, but 
students’ school absences do change over time. In the example data provided in section 1.1, if a 
researcher records the number of absences at the same time as she records ORF scores, then she 
can use this variable to try to explain some of the within-student variance. 

Once the most appropriate functional form is selected and any time-varying variables of 
interest are modeled, then the differences between students can be explored. This means that the 
students are assumed to have the same general functional form of growth, but individual students 
can have different values of their individual growth parameters. Thus, individual students can 
differ based on the intercept (initial status) and slope(s) (e.g., linear, quadratic, cubic).  One can 
also explore if differences in intercept and slope are related to variables of interest, such as 
socioeconomic status or special education status. For example, is there a relation between ORF 
initial status and special education status, and is there a relation between rate of ORF growth and 
special education status? What about SES, or type of reading program, or access to reading 
materials at home? In addition, variance can be modeled at a school, district, or state level as 
well. This means that school variables that may have an influence on ORF status and growth can 
be analyzed. For example, does being in a Title 1 school have an effect on ORF status or growth?  
What about public versus private schools, or schools with teachers with more years of 
experience? All of these research questions can be introduced into statistical models of 
longitudinal data. 
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3.2.3 Univariate (e.g., HLM) and Multivariate (e.g., SEM) 
One of the most prominent analytic methods for modeling growth is Hierarchical Linear 

Modeling (HLM). The term HLM applies to the analytic technique, as well as the popular 
software program that executes these analyses (Raudenbush & Bryk, 2002). The term 
hierarchical refers to the structure of the data, in which levels of data are nested within other 
levels. For example, students (level-1) are nested in schools (level-2), meaning that there are 
separate groups of students who are nested within separate schools. This can be expanded to 
schools (level-2) that are nested in different districts, or states. This kind of data structure can 
also be applied to longitudinal data analysis, in which case testing occasions (level-1) are nested 
within students (level-2), meaning that each student has taken any number of repeated tests over 
time. 

In longitudinal data analysis in education this hierarchical, or nested, data structure is 
important because it separates the variance component into a within-student component (level-1) 
and a between-student component (level-2). OLS regression assumes that the residuals across 
students are independent of one another; that is, there is assumed to be no correlation, or 
similarities, between students that is not accounted for by the model. But this assumption may 
not always be accurate, as there are often similarities among students who attend the same 
school. Since schools draw students from the same neighborhood, students often share similar 
background contextual characteristics such as SES, and since these students are taught by the 
same teachers, they also share similar educational contextual characteristics. Thus, an advantage 
of HLM is that it can partition the variance at these different levels to account for these shared 
contextual factors.  

HLM also has the flexibility to test the effects of predictor variables on the initial status 
and the change in slope, and offers a statistical test for both individual effects and group 
variation in growth. Another advantage is that HLM (and other software) can include all students 
who have been observed on at least one occasion, and as long as the data are missing at random 
then results can be interpreted as if there were no missing data. 
 
3.2.4 Latent Growth Modeling 

Another prominent analytic method for modeling growth is latent growth modeling, a 
special case of the more general approach known as structural equation modeling (SEM). Latent 
growth modeling is also known as latent growth curve modeling or latent growth curve analysis. 
SEM is a statistical technique used to test and estimate causal relations among observed and 
unobserved variables. For the review of SEM in this series, please see Anderson, 
Patarapichayatham, and Nese (2010).  

In general, compared to HLM, SEM offers an alternative approach to model specification 
and estimation (Singer & Willett, 2003). In terms of model specification, HLM takes a univariate 
approach to longitudinal data analysis, in which the outcome is a single variable so that each 
student has a separate row of data for each occasion. SEM takes a multivariate approach, in 
which there multiple outcomes so that each student has a separate column for each testing 
occasion. Figure 7 shows an example of the data structure for each approach. Figure 7a 
represents the univariate approach, where you can see the ORF (outcome) data for two students, 
across months, and Figure 7b represents the multivariate approach, where you can see the data 
for nine students, and each of the variables with the ORF prefix represents a separate testing 
occasion. Notice that the structure of “stuid = 1” is the same across the data, reading down in 
Figure 3a and across in Figure 5b. 
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b) 

 

Figure 7. (a) Univariate data structure used in HLM, and (b) multivariate data structure used in 
SEM. 
 

With the multivariate data structure, what is a two-level model in HLM (occasions within 
students) is a one-level model in SEM. And thus a three-level model in HLM is then a two-level 
model in SEM, and so on.  

Perhaps the most fundamental and important difference between the two approaches, is 
that latent growth modeling using an SEM approach offers more flexibility in its model 
specification based on its approach to estimation. SEM is also known as covariance structure 
analysis, given its model estimation procedures. SEM uses an estimation procedure based on the 
probability distributions of the variance-covariance and mean structures of the data. In an SEM 
framework, the intercept and slope(s) are treated as unobserved variables, or random effects. 
HLM, on the other hand, generally uses an estimation procedure based on the probability 
distribution of the outcome variable based on the random effects and parameters. In general, 
SEM offers more flexibility with access to the variance-covariance and mean structures. SEM 
provides an opportunity to model: (a) differences in residual variances over time (as opposed to 
the HLM default that assumes equal residual variance across all occasions); (b) correlated 
residuals over time that can be specified to the researchers' needs; (c) regressions among the 
outcomes over time; (d) growth modeling as part of a larger latent variable model; (e) growth 
modeling of factors measured by multiple indicators; (f) regressions among growth factors and 
random effects; (g) estimated time score models; and (h) the general flexibility to fix, constrain, 
and/or correlate variances and means.  
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3.2.5 Modeling Heterogeneity in Growth Patterns 
As introduced in the previous section, random coefficient modeling (e.g., Raudenbush & 

Byrk, 2002) and latent growth curve modeling (Meredith & Tisak, 1990) are common growth 
models used to study growth in education research. These modeling techniques, however, 
assume that individuals come from one population with a single average intercept (i.e. starting 
point) and one average growth trajectory, which may not always be reasonable. Alternative 
approaches such as growth mixture modeling (GMM) and latent class growth analysis (LCGA) 
relax the single population assumption and allow different classes of individuals to vary around 
different mean growth curves. GMM assumes class variant parameters on intercept (starting 
point) and slope (growth), including their fixed and random effects, and error variances. LCGA 
is more restrictive, and assumes that there is zero within-class variance on the intercept and 
slope. These models may be more reasonable when describing growth, especially when there are 
theoretical reasons to believe that growth patterns may be heterogeneous. 

There are educational implications when subgroups of students exist in the population 
with different growth trajectories. For example, a Head Start program study by Kreisman (2003) 
found that there were two distinct growth patterns, with a majority class that displayed below-
average initial reading and math scores and exhibited negative growth over time in both subjects, 
and a minority class that displayed below-average initial reading and math scores, but exhibited 
steady positive growth. These results would have important practical implications, such as the 
use of different intervention strategies to address the needs of the two distinct groups of students. 
 
3.2.6 An Alternative Approach to Modeling Non-linear Growth using Benchmark Data 

Growth may not always be linear. Quadratic and cubic growth models are common 
methods, but involve complicated modeling techniques used to examine non-linearity in the 
growth curves. However, such polynomial growth models present challenges especially for 
benchmarking data that uses three data points. Kamata, Nese, Patarapichayatham, and Lai (in 
preparation) suggested a combination of estimating the time score and a growth mixture analyses 
approach when only three occasions are available for studying growth. The estimated time score 
model aims to examine non-linearity in the data. Although this approach is typically used in a 
linear growth model setting (with at least two time scores fixed), one or more time scores can be 
set as free parameters. For example, using a data set with nine time points, Heck and Takahashi 
(2006) found a non-linear declining growth curve by freely estimating factor loadings for the last 
two time points. Thus, this procedure allows for the estimation of non-linear growth, and is an 
approach to help determine the functional form of growth. 

In the case of benchmarking data with fall, winter, and spring scores available, the factor 
loadings can be specified as (0, 1, λ), where λ is the parameter to be estimated. If λ is estimated 
to be 2, the growth would be linear because of the equal time intervals. If λ is not 2, growth is 
then non-linear. If λ < 2 in our example, it would indicate that growth during the winter-spring 
terms is steeper than the growth during fall-winter terms. On the other hand, if λ > 2, it would 
mean that growth for the winter-spring term is flatter than the fall-winter term. In addition to 
modeling non-linearity in growth, Kamata et al. (in preparation) were able to examine for 
differences in growth patterns using growth mixture modeling, which could provide additional 
information about the relation between the two growth patterns of fall-winter and winter-spring 
terms. 
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3.3 Accountability 
The purpose of accountability in education is to provide information on students, schools, 

and school systems to improve learning and assist policy making (Sanders & Horn, 1994). 
Accountability models generally focus on the product and not the process by which it is 
achieved. Different accountability models are discussed in the following sections. 
 
3.3.1 Models for Determining Adequate Yearly Progress (AYP) 

Status and improvement models have been primary federal accountability approaches for 
determining if schools have met the adequate yearly progress (AYP) status, a requirement of the 
No Child Left Behind Act of 2001. The status model compares the percentage of students who 
are proficient based on the current year’s test scores to the state’s annual targets. Schools that do 
not meet the AYP status can use the Improvement model, which allows them to receive credits if 
there is at least a 10% decrease of students in a particular subgroup who are not proficient from 
the previous year to the next. Finally, the Index model is an alternative for schools to receive 
partial credit for student subgroups scoring below proficient if the current year students were to 
make gains (e.g., below basic to basic) over the previous year students in the same grade. It is 
important to note, however, that these models do not necessarily compare the same cohort of 
students. Both the Status and Improvement models have been criticized for not giving credit to 
schools that may have shown academic improvement for students at different levels of 
proficiency. Finally, neither model considers that teachers, schools, or districts may have no 
control over students who are low performing at a given time point. To address these critiques, 
the Growth Model Pilot program in 2005 and the Differentiated Accountability pilot program 
(2008) were initiated. These programs suggest a trend toward valuing academic growth and less 
emphasis on average performance of a school, district, or state. 
 
3.3.2 Value-Added Models 

Value-added models (VAM) are used to evaluate the effectiveness of teachers and 
schools using information from students’ academic growth (Braun, 2005). At least two years of 
data (student and classroom or school) that are matched to either the teacher or the school data 
are required for VAMs in order to estimate the contributions of schools or teachers to student 
academic growth. VAMs yield a number associated with each teacher or school, which is then 
used to compare how different a teacher’s performance is from the performance of an average 
teacher, given the average growth of the students in the class. 

VAMs assume that the effect of a teacher is constant on all of the teacher’s students in a 
given subject and year, with the teacher’s effect remaining constant or diminishing throughout 
the year. It is also assumed that teachers have access to equal resources and share similar 
academic goals in their classes. Although these assumptions could be plausible, they should be 
tested.  

Despite VAMs’ popularity as a statistical tool to evaluate teacher and school 
effectiveness for accountability purposes, there are many practical and statistical concerns. 
Questions on the fairness of using VAMs arise because students’ academic growth may be 
influenced by many factors, including classroom placement with a teacher, as well as school 
context and practice (i.e. school resources and implementation of school and district policies) 
that are not within the control of teachers. Additionally, VAM models, just like many statistical 
models, cannot offer causal explanations due to lack of random pairings among students and 
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teachers. Finally, longitudinal data that VAMs model require generally cannot avoid missing 
data, which could subsequently bias the estimated effectiveness of teachers (i.e. teacher effects). 

VAMs are a family of models that estimate the contributions of schools or teachers to 
student academic growth. Some VAMs that are being used currently include the Educational 
Value-Added Assessment System (EVAAS), the Dallas Value-Added Accountability System 
(DVAAS) and the Rate of Expected Academic Change (REACH) (for more information about 
these VAMs, see Sanders, Saxton, & Horn, 1997; Webster & Mendro, 1997; and Doran & Izumi, 
2004). 
 
4. Conclusion 

The intent of this paper is to provide an overview of longitudinal data analysis in 
education for practitioners, administrators, and other consumers of educational research. The 
examples and descriptions presented here are meant as a primer regarding the some of the 
purposes, benefits and limitations, and analyses used in longitudinal data analysis in education. 
The first purpose of longitudinal data analysis is to determine the functional form of growth. The 
second purpose, which often follows the first in a study of growth, is to examine the relation 
between the trajectory and variables of interest. There are several approaches to this purpose, 
including but limited to, regression, HLM, and SEM. Accountability models are also used to 
assist policy making by focusing on the product of the system as parceled by schools or teachers. 
This paper is intended as a primer on longitudinal growth modeling in education for consumes of 
such research such as school administrators. For a more thorough discussion of any area 
introduced in this paper, please see the books by Singer and Willett (2003), Braun (2005), 
Raudenbush and Bryk (2002), and articles by Meredith and Tisak (1990), Daniel McCaffrey and 
William Lockwood for information on value-added models. 
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